Local Biodiversity Strategy 2022 PUBLIC VERSION This document and the information contained herein has been prepared by Focused Vision Consulting Pty Ltd under the terms and conditions of its contract with the client identified on the cover page and to the requirements of that client, and no representation is made to any third party. This report may not be distributed to any third party without the specific written permission of Focused Vision Consulting Pty Ltd. The information presented in this report is relevant at the time of production and its applicability is limited to the context of the scope of work to which it pertains. This report and its information may be cited for the purposes of scientific research or other fair use but except as permitted under the Copyright Act 1968 (Cth), no part of or the whole of this document is permitted to be used, exploited, duplicated, reproduced, or copied by any process, electronic or otherwise, without the specific written permission of Focused Vision Consulting Pty Ltd. #### **Focused Vision Consulting Pty Ltd** ABN 25 605 804 500 Please direct all enquiries to: Focused Vision Consulting Pty Ltd 8/83 Mell Road, SPEARWOOD WA 6163 P: 08 6179 4111 admin@focusedvision.com.au #### **Table of Contents** | Execut | ive Summary | | |--------|---|-----| | 1 | Introduction | _1 | | 1.1 | Biodiversity | 1 | | 1.1.1 | Why Conserve and Protect Biodiversity? | 1 | | 1.2 | Local Biodiversity Strategy | 3 | | 1.2.1 | Context | 3 | | 1.2.2 | Importance of a Local Biodiversity
Strategy | 3 | | 1.2.3 | Strategy Framework | .3 | | 1.2.4 | Local Natural Areas | 5 | | 2 | Legislation, Policies and Plans | .7 | | 2.1 | Legislation | 7 | | 2.2 | City of Kwinana | 9 | | 2.2.1 | City of Kwinana Draft Local Planning
Strategy 2021-2036 | 9 | | 2.2.2 | City of Kwinana Strategic Community Plan 2021-2031 | 9 | | 2.2.3 | Town of Kwinana Local Planning Scheme No. 2 and No. 3 | .10 | | 2.2.4 | City of Kwinana Policy – Development within Special Rural Zones | 10 | | 2.3 | Retention of Vegetation | _11 | | 3 | Biodiversity Assets | 13 | | 3.1 | Vegetation | _13 | | 3.2 | Regional Parks, DBCA Reserves,
City Reserves | 20 | | 3.2.1 | Regional Parks | 20 | | 3.2.2 | DBCA Managed Reserves | 21 | | 3.2.3 | Bush Forever Sites | 25 | | 3.2.4 | City Reserves and Parks | 28 | | 3.3 | Threatened and Priority Flora and Fauna Species | 47 | | 3.4 | Threatened and Priority Ecological Communities | 47 | | 3.4.1 | Tuart Woodlands and Forests TEC | 48 | | 3.4.2 | Mound Springs SCP (TEC) | 49 | | 3.4.3 | SCP 19b – Woodlands over sedgelands in Holocene dune swales of the southern | | Swan Coastal Plain___ | 3.4.4 | Banksia Woodlands TEC | 50 | |-------|--|-----------------| | 3.4.5 | SCP 21c - Banksia attenuata and/or
Eucalyptus marginata woodlands of the
eastern side of the Swan Coastal Plain
(part of Banksia woodlands TEC) | _51 | | 3.4.6 | SCP 22 - Shrublands and woodlands of the eastern side of the Swan Coastal Plain (part of Banksia woodlands TEC) | ne
51 | | 3.4.7 | SCP 26a – Melaleuca huegelii -
Melaleuca systena Shrublands | _51 | | 3.4.8 | SCP 24 – Northern Spearwood
Shrublands and Woodlands | 58 | | 3.4.9 | SCP 25 - Southern Eucalyptus
gomphocephala - Agonis flexuosa
Woodlands | 52 | | 3.5 | Waterways and Wetlands | 54 | | 3.6 | Regional and Local Ecological Linkages | 56 | | 3.7 | Threats to Biodiversity | 58 | | 3.7.1 | Invasive Species | 58 | | 3.7.2 | Fragmentation from Clearing | 58 | | 3.7.3 | Land Use and Development | 58 | | 3.7.4 | Altered Hydrology and Erosion | 58 | | 3.7.5 | Pathogens | 58 | | 3.7.6 | Degradation of Natural Areas | 59 | | 3.7.7 | Global and Regional Threats | _59 | | 4 | Biodiversity Planning Precincts | 60 | | 5 | Vegetation Inventory and
Retention Targets | 63 | | 6 | Local Natural Area Values and Prioritisation | 64 | | 6.1 | Prioritisation of Local Natural Areas | 83 | | 6.2 | Summary of Key Values for LNAs within the City of Kwinana | 83 | | 7 | Biodiversity Vision, Directions and Actions | 85 | | 7.1 | Vision | 85 | | 7.2 | Strategic Directions | 85 | | 7.3 | Strategic Actions | 85 | | 8 | References | 91 | | Appendix A – Geomorphic Wetlands within the City of Kwinana | A1 | |--|----| | Appendix B – Prioritisation of High
Conservation Value LNAs | B1 | | | | | Figures | | | Figure 1 – Methodology for Development of the LBS | 4 | | Figure 2 – LNAs in the City of Kwinana | 6 | | Figure 3 – Biodiversity Loss in Relation to Native Vegetation Loss (Smith and Siversten 2001) | 12 | | Figure 4 – Original and Current Extent of Pre-European Vegetation in the City of Kwinana | 15 | | Figure 5 – Original Extent of Vegetation Complexes in the City of Kwinana | 19 | | Figure 6 – Regional Parks and DBCA
Managed Lands | 24 | | Figure 7 – Bush Forever Sites in the City of Kwinana | 27 | | Figure 8 – City of Kwinana Managed Reserves | 30 | | Figure 9 – Known Locations of Threatened and Priority Flora | 38 | | Figure 10 – Documented Locations of Threatened and Priority Fauna | 43 | | Figure 11 – Threatened and Priority Ecological Communities | 53 | | Figure 12 – Geomorphic Wetlands of the Swan Coastal Plain | 55 | | Figure 13 – Regional and Local Ecological Linkages | 57 | | Figure 14 – Biodiversity Planning Precincts | 61 | | Figure 15 – Biodiversity Planning Precincts
Vegetation Retention Targets | 69 | | Figure 16 – LNA Prioritisation Methodology | 77 | | Figure 17 – High Conservation Value Local
Natural Areas | 78 | | Figure 18 – Local Natural Areas Prioritisation | 79 | | Figure 19 – LNAs of Highest Priority | 82 | #### **Tables** | Table 1 – Values and Ethical Positions in Relation to Biodiversity Conservation (Lindenmayer and Burgman 2005) | 1 | |---|-----| | Table 2 – Summary of Remaining Vegetation in the City | _5 | | Table 3 – Summary of Legislative, Policy, and Planning Frameworks | .7 | | Table 4 – City of Kwinana Key Policies,
Strategies and Planning Documents | 10 | | Table 5 - Pre-European Vegetation within the City of Kwinana (Beard 1990, DBCA 2019) | _14 | | Table 6 - Vegetation Complexes within the City of Kwinana (Heddle et al. 1980) | 16 | | Table 7 – DBCA Managed Reserves within the City | 22 | | Table 8 – Summary of Bush Forever Sites within the City | 25 | | Table 9 – Current City of Kwinana Managed
Reserves | 28 | | Table 10 - Threatened and Priority Flora Species List | 32 | | Table 11 - Threatened and Priority Fauna Species List | 39 | | Table 12 - Threatened and Priority Ecological Communities Occurring within the City | 47 | | Table 13 - Floristic Community Types
Corresponding to the Tuart Woodlands and
Forests TEC (Gibson et al. 1994) | 49 | | Table 14 –Floristic Community Types
Corresponding to the Banksia Woodlands TEC | 50 | | T able 15 – Remnant Vegetation within the City of Kwinana | 60 | | Table 16 – Retained Vegetation Associations within each Precinct in the City of Kwinana | 64 | | Table 17 – Retained Vegetation Complexes within each Precinct in the City of Kwinana | 66 | | Table 18 – Summary of Vegetation Associations and Complexes with Less Than 30% Remaining within the City | 68 | | Table 19 – Prioritisation Criteria (Adapted from PBP 2013) | 80 | | Table 20 – High Priority LNAs (with a Score of Greater than 24) | 84 | # **Executive Summary** The City of Kwinana (the City) is a thriving and expanding local government area located approximately 25 km south of the Perth Central Business District and contains diverse land uses including heavy industry, urban residential, rural and commercial areas. The City has grown rapidly from a population of 23,986 in 2006 to an estimated residential population of 41,866 in 2017 (City of Kwinana 2018) and has the second fastest growing population within any local government area within Western Australia (City of Kwinana 2021c). Kwinana's population is anticipated to grow by approximately 45,000 additional people and 15,000 new dwellings over the next 15 years (City of Kwinana 2021a). By 2036, the population of Kwinana is expected to be approximately 85,000 people. Due to the anticipated population growth and residential land and housing requirements, the conservation and protection of biodiversity must be a priority, so that current and future generations can appreciate existing natural environments and biodiversity. The south-west of Western Australia is one of 36 global biodiversity hotspots, with high levels of species endemism. Biodiversity underpins the ecological processes necessary for maintaining marine and estuarine quality, soil fertility and clean fresh water and air (City of Kwinana 2019) and is a fundamental quality and character of the landscape, provides recreational opportunities, aesthetic value and cultural identity (City of Kwinana 2019). The City of Kwinana contains a variety of landforms including dune systems from Kwinana Beach, wetlands including "The Spectacles" and extends out into the Bassendean Dune system east of the Kwinana Freeway containing the Banksia Woodlands of the Swan Coastal Plain Threatened Ecological Community (TEC) (City of Kwinana 2018). A total of seven Commonwealth or State-listed TECs occur within the City, as well as two Priority Ecological Communities (PECs). Numerous Department of Biodiversity Conservation and Attractions (DBCA) Managed Reserves and Regional
Parks (Beeliar and Jandakot Regional Parks), as well as 11 Bush Forever sites occur within the City. Numerous factors threaten biodiversity within the City, including: - weed invasion - · fragmentation of remnant vegetation and habitat loss through land clearing - poor land-use planning and development - altered hydrology and erosion - pathogens - feral animals preying on native animals and reducing habitat (loss of nesting hollows to more aggressive introduced birds and feral bees) - degradation of natural areas through illegal dumping, vandalism of native flora during wood collection, off road motor bikes and 4WD vehicles - global and regional threats such as climate change. The City of Kwinana's Draft Local Planning Strategy (2021a) recommended the preparation of this Local Biodiversity Strategy (LBS) to provide a framework for the protection and management of significant local natural areas (LNAs) within the City, in addition to those already set aside for protection by the State Government. The LBS was developed in response to the continuing decline of natural environments and native biodiversity (Ironbark Environmental 2017). The City's LBS outlines strategic directions and actions, with the vision to 'Prioritise, protect and enhance the City's natural areas'. The LBS has been developed to achieve the City's vision through the following strategic directions: - 1. Increase the protection status of significant biodiversity in the City, including on local government managed or owned lands, and on private land. - 2. Appropriately manage LNAs to reduce identified threats. - 3. Increase the viability and resilience of LNAs by establishing or enhancing buffers and regional and local ecological linkages. - 4. Achieve long-term community engagement in local biodiversity management. - 5. Embed the consideration of biodiversity as standard in all decisions and activities of the City. ### 1 Introduction #### 1.1 BIODIVERSITY Biodiversity can be described as the variety of all living things such as plants, animals, microorganisms, the genetic information they contain and the ecosystems they form, which exists at three main levels (Australian Museum 2021): *Genetic diversity* – the variety of genetic information contained in all living things which varies within and between populations of organisms comprising single species or wider groups. *Species diversity* – the variety of species on Earth. *Ecosystem diversity* – the variety of the Earth's habitats, ecosystems and ecological processes (National Biodiversity Strategy Review Task Group 2009). The southwest of Western Australia is one of 36 global biodiversity hotspots with high levels of species endemism and loss of habitat. To qualify as a biodiversity hotspot, at least 1,500 vascular flora species must be endemic and 30% or less of its original native vegetation remains (Conservation International 2021). There are 812 genera from 232 flora plant families (Gioia 2010) which are endemic to southwest Western Australia, where many species have restricted distributions and species and subspecies are still to be described (Hopper and Gioia 2004). Approximately 34.77% of the original extent of native vegetation remains within the City of Kwinana, with only 3.77% under formal protection. Why Conserve and Protect Biodiversity? Conservation has been defined by the World Conservation Strategy (IUCN 1980) as: "The management of human use of the biosphere so that it may yield the greatest sustainable benefit to present generations while maintaining its potential to meet the needs and aspirations of future generations." Biodiversity conservation and protection can be influenced by underlying human influences and philosophies or ethical positions that can differ between individuals, communities and organisations (Lindenmayer and Burgman 2005). These values and ethical positions are summarised in **Table 1**. Table 1 – Values and Ethical Positions in Relation to Biodiversity Conservation (Lindenmayer and Burgman 2005) City of Kwinana LOCAL BIODIVERSITY STRATEGY #### **Utilitarian Value** - Consumptive value - Productive use value - Service value - Scientific and educational value - Cultural, spiritual, experiential and existence value - Aesthetic, recreational and tourist use #### Intrinsic Value - Ecocentric ethic - Biocentric ethic #### Futuristic Option Value • Future discoveries of utilitarian and/or intrinsic value #### Precautionary Principle Ecosystem services are processes by which natural ecosystems sustain human life and include, but are not limited to, producing goods and services (DEWHA 2009). These services and processes can be further broadly categorised as: - Production of goods: e.g., food, pharmaceuticals, durable materials, energy, industrial products and genetic resources - Regenerative process: e.g., cycling and filtration processes - Stabilisation processes: e.g., coastal and riverbank stability and the control of pest species - Life-fulfilling processes: e.g., aesthetic beauty and serenity - Preservation of future options: e.g., new goods and services awaiting discovery (Lovett et al., 2004). As well as providing these services, natural environments that are relatively undisturbed can add to scientific and educational value. For example, students understanding a wetland as a natural ecosystem in a practical sense. There may also be areas or sites of spiritual and cultural significance for indigenous people. Even the existence of natural areas and high level of biodiversity in these areas may provide aesthetic, recreational and tourist appeal that both provides conservation and protection of biodiversity as well as contributes to the economy through tourism (Lindenmayer and Burgman 2005). Conservation and protection of biodiversity at any scale, including Global, National, State, and Local should be a priority. At a local level the importance is more relevant as it is happening in our own backyard, and we can see we are making a difference (Ironbark Environmental 2007). Due to this, the City prepared a Local Biodiversity Strategy (LBS) and revised it so that current and future generations can appreciate the existing natural environment and biodiversity. #### 1.2 LOCAL BIODIVERSITY STRATEGY #### 1.2.1 Context The City of Kwinana developed the first stage of their LBS which was prepared by Ironbark Environmental in 2007. The LBS followed the biodiversity planning guidelines prepared by the Western Australian Local Government Association (WALGA) supported by the State Government (Del Marco *et. al.* 2004). Ironbark Environmental was commissioned to prepare a paper, 'Natural Area Conservation in the City of Kwinana Paper' (NACKP) in 2013, which reviewed and updated key components of the City's LBS and was incorporated into the City's Draft Local Planning Strategy (LPS) (City of Kwinana 2021a; 2021b). #### 1.2.2 Importance of a Local Biodiversity Strategy A biodiversity strategy is developed in response to the continuing decline of natural environments and native biodiversity, with the overall goal to recover and conserve the existing biodiversity and environment. An LBS allows for a more detailed focus on the natural environment that exists within the City's municipality (Ironbark Environmental 2007). The previous strategy provided an overarching set of goals and targets summarised in an action plan at a local level to benefit both the environment and local community and allowed for community contribution in the decision-making process and identification of LNAs they consider important for current and future conservation and preservation (Ironbark Environmental 2007). #### 1.2.3 Strategy Framework A LBS is a local planning policy that has been developed in accordance with the Local Government Biodiversity Planning Guidelines (Del Marco et. al. 2004) designed to identify and prioritise local natural areas (LNAs) for conservation. It also meets the requirements of a local bushland protection strategy, as referred to in State Planning Policy 2.8 (Government of Western Australia 2010). A LBS will inform the LPS, and the LPS will in-turn inform the LBS, in relation to the potential issues associated with the City's biodiversity values and LNAs and provide guidance to the future conservation, preservation, and environmental management (City of Kwinana 2019). These documents in current existence, and all other relevant statutory requirements related to biodiversity conservation within the City are discussed in detail in Section 2. This LBS forms part of the City's vision, where from a community's perspective it's "a unique and liveable City, celebrated for, and connected by, its diverse community, natural beauty and economic opportunities" and from a planning view, "effective planning today, helps to shape the Kwinana of tomorrow". Both visions will ensure any future planning and directions for the City incorporate biodiversity conservation, with an increase in community awareness of their surroundings and environment. A vision for biodiversity protection and conservation has been developed as the basis of this LBS, and in support of this vision, strategic directions have been derived, with strategic actions determined in order to achieve each of the strategic directions. The framework for this LBS is designed to update and complement past strategies and relevant City documents relating to the protection of its natural environment and biodiversity. The LBS methodology utilised to develop this framework is broadly summarised in **Figure 1**. LOCAL BIODIVERSITY STRATEGY Figure-1--Methodology-for-Development-of-the-LBS1 #### 1.2.4 Local Natural Areas LNAs are defined as natural areas excluding the DBCA Managed Estate, Regional Parks and Bush Forever sites (Del Marco et al. 2004). They are areas the City has greatest control of and influence over (Ironbark Environmental 2007). The City's LNAs include bushland, wetlands, foreshores, coastal areas and any areas in a
near-natural state with native species, excluding Bush Forever sites, DBCA managed lands, and Regional Parks. The LNAs within the City are presented in **Figure 2**. As these areas are the responsibility of the City, and where there are opportunities to protect and enhance biodiversity, the LBS will help identify them and achieve the vision of the LBS. Achievement of the vision will be via the implementation of strategic actions, which have been formulated based on prioritised LNAs. The LNAs have been prioritised in reference to categories developed by Del Marco et al. (2004). The prioritisation process is discussed in more detail in **Section 5**. The City of Kwinana comprises a total area of 12,005.68 ha. Of this, 4,174.62 ha (34.77%) of the pre-European extent of vegetation currently remains. A summary of the remaining vegetation extent by administrative planning categories is presented in **Table 2**. Table 2 – Summary of Remaining Vegetation in the City | Administrative Planning Category | Area (ha) | % of Total | |--|-----------|------------| | Total City Area | 12,005.68 | 100 | | Urban/Non-vegetated area | 7,831.06 | 65.23 | | 2020 Native vegetation extent | 4,174.62 | 34.77 | | Bush Forever | 2,378.90 | 19.81 | | DBCA Conservation Estate | 915.30 | 7.62 | | Existing City Managed Reserves | 419.45 | 3.49 | | Local Natural Areas | 2,140.70 | 17.83 | | Local Natural Areas (excluding existing City Managed Reserves and current residential development areas) | 1,941.04 | 16.17 | Figure 2 – LNAs in the City of Kwinana # 2 Legislation, Policies and Plans #### 2.1 **LEGISLATION** In Western Australia, biodiversity conservation and protection of the natural environment is achieved through a hierarchy of legislation, policy, and planning frameworks. Both statutory and non-statutory planning processes and tools address matters in relation to the retention of remnant vegetation, protection of flora and fauna species, and management of their habitats. This LBS draws upon existing legislative and government policies across National, State and Local levels that are summarised below (**Table 3**). Table 3 – Summary of Legislative, Policy, and Planning Frameworks | Government
Jurisdiction | Statutory Mechanisms/
Legislation | Key Strategic, Policy, and Planning Documents | |----------------------------|--|---| | National | • Environment Protection and
Biodiversity Conservation Act
1999 (EPBC Act) | National Local Government Biodiversity Strategy (Berwick and Thorman 1999) National Objectives and Targets for Biodiversity Conservation 2001-2005 (Commonwealth of Australia 2001) Australia's Strategy for Nature 2019-2030 (Commonwealth of Australia 2019) National Wildlife Corridors Plan 2012 (DESWPC 2012) | | | s | | | | |----------------------------|--|---|--|--| | Government
Jurisdiction | Statutory Mechanisms/
Legislation | Key Strategic, Policy, and Planning Documents | | | | | | A 100-year Biodiversity Conservation Strategy for
Western Australia DRAFT Phase One: Blueprint to the
Bicentenary in 2029 (DEC 2006) | | | | | | Perth and Peel @ 3.5 Million: Environmental Impacts, Risk and Remedies (EPA 2015) | | | | | | South Metropolitan Peel Sub-Regional Planning Framework (DPLH 2018) | | | | | | Bush Forever – Volume 1: Policies, Principles and
Processes and Bush Forever – Volume 2: Directory of
Bush Forever sites (Government of Western Australia
2000a & 2000b) | | | | | Environmental Protection Act | WA Environmental Offsets Policy and Guidelines (Government of Western Australia 2011 & 2014) | | | | | 1986 (EP Act) Conservation and Land Management Act 1984 (CALM Act) Wildlife Conservation Act 1950 (WC Act) Planning and Development Act 2005 (PD Act) Biodiversity Conservation Act 2016 (BC Act) Soil and Land Conservation Act 1945 (SLC Act) | Conservation and Land | 1986 (EP Act) We Conservation and Land We 1986 | Wetlands Conservation Policy for Western Australia (Department of Conservation and Land Management 1997) | | | | Metropolitan Region Scheme (WAPC 1984/2014) | | | | State | | Towards Establishing a Green Network (South West Group 2014) | | | | State | | State Planning Policy 2.0 – Environment and Natural Resources Policy | | | | | | State Planning Policy 2.1 – The Peel-Harvey Coastal Plain Catchment | | | | | | State Planning Policy 2.3 – Jandakot Groundwater Protection | | | | | | State Planning Policy 2.4 – Basic Raw Materials | | | | | | State Planning Policy 2.5 – Rural Planning | | | | | | State Planning Policy 2.6 – State Coastal Planning | | | | | | State Planning Policy 2.7 – Public Drinking Water Source | | | | | | State Planning Policy 2.8 – Bushland Policy for the Perth Metropolitan Region | | | | | | State Planning Policy 2.9 – Water Resources | | | | | | State Planning Policy 3.0 – Urban Growth and Settlement | | | | | | State Planning Policy 4.1 – State Industrial Buffer | | | | Local | | Local Government Biodiversity Planning Guidelines for
Perth Metropolitan Region (Del Marco <i>et al.</i> 2004) | | | | | | City of Kwinana Local Planning Scheme No. 2 (1992) | | | | | | | | | #### 2.2 CITY OF KWINANA The City has prepared policies, and strategic and planning documents that identify and address biodiversity, planning and operational aspects, as well as how to implement and monitor the progress and changes across the municipality (listed in **Table 3**). In addition to the LBS, other relevant documents address the protection and conservation of biodiversity and the management of LNAs and native vegetation within the local area. #### 2.2.1 City of Kwinana Draft Local Planning Strategy 2021-2036 The City's Local Planning Strategy (LPS) (2021a) indicates that the key element in relation to liveability, character, resilience and sustainable development is the environment. The key environmental directions are to: Enhance tree canopy cover to cool residential streets and open spaces during extreme heat, provide shade to encourage walking and cycling, create leafy neighbourhoods, and enhance local biodiversity Identify ecological linkages which link locally and regionally significant LNAs and provide stepping-stones for flora and fauna. These linkages would support the ongoing management of regional sites and provide opportunities for integrated walking trails with interpretive signage To identify, permanently protect and enhance Kwinana's natural environment which is critical to the maintenance of ecological processes and biodiversity Promote planning measures that encourage climate change adaptation and mitigation to ensure our communities are both resilient and liveable. From these directions, 16 strategic actions have been proposed over the course of the Planning Strategy and shall be ongoing for future generations. One of these actions is the preparation of a Local Biodiversity Strategy (this document) which prioritises LNAs requiring conservation and protects significant landscape features and ecological linkages. In addition, as indicated above, Western Australia is vulnerable to climate change impacts and the City has recognised its responsibility to act through the adoption of the Climate Change Plan 2021 – 2026. #### 2.2.2 City of Kwinana Strategic Community Plan 2021-2031 The City's Strategic Community Plan through community engagement has assisted in the development of new strategic directions with the central vision of: "A unique and liveable City, celebrated for and connected by, its diverse community, natural beauty and economic opportunities". In relation to the environment, the community outcome identified is to have 'a naturally beautiful environment that is enhanced and protected'. Strategic objectives to implement this outcome are to: - Retain and improve our streetscapes and open spaces, preserving the trees and greenery that makes Kwinana unique - Maintain and enhance our beautiful, natural environment through sustainable protection and conservation. Activities such as coastal planting and implementing measures which includes community engagement to improve satisfaction with conservation, land and environmental management will assist with driving the strategies and plans summarised in **Table 4**, helping to achieve both the environmental outcomes and related strategic objectives. LOCAL BIODIVERSITY STRATEGY Table 4 – City of Kwinana Key Policies, Strategies and Planning Documents #### Key Policies, Strategies and Planning Document Town of Kwinana Local Planning Scheme No. 2 Town of Kwinana Local Planning Scheme No. 3 City of Kwinana Policy - - Development within Special Rural Zones 2001 City of Kwinana Local Planning Policy No. 1 – Landscape Feature and Tree Retention City of Kwinana Local Planning Policy No. 2 – Streetscapes City of Kwinana Local Planning Policy No. 3 – Bollard Bulrush Landscape Masterplan A Future for
Kwinana's Natural Areas, Draft Report: Technical Version 2007 Town of Kwinana Bushland Masterplan 2006-2011 Natural Area Conservation in the City of Kwinana 2013 City of Kwinana Local Biodiversity Study 2019 City of Kwinana Natural Areas Management Plan 2014-2024 City of Kwinana Climate Change Mitigation and Adaptation Plan 2015-2020 City of Kwinana Sustainable Water Management Plan 2018 City of Kwinana Strategic Community Plan 2021-2031 City of Kwinana Draft Local Planning Strategy 2021-2036 Waste Plan Waste Education Plan **Environmental Education Plan** Climate Change Plan Landscape Strategy Sustainable Water Management Plan Kwinana Local Emergency Management Plan Calista Oval Management Plan Mosquito and Midge Management Plan #### 2.2.3 Town of Kwinana Local Planning Scheme No. 2 and No. 3 Throughout this document, the Town of Kwinana Local Planning Scheme No. 2 and No. 3 will be referred to as the Scheme to prevent confusion with the LPS. Of the five objectives for the Scheme, one is related to the environment, which is; 'introducing measures by which places of natural beauty and places of historic or scientific interest may be conserved'. Land reserved under the Scheme for local government purposes is known as a Local Reserve', and any potential development may require planning approval from the local government under the Scheme. The Scheme area is covered by Policy and Development Areas and Zones, where each Policy Area is the subject of a Policy Statement that establishes broad land use objectives as a guide to future decisions concerning subdivision, development and zoning. Twenty-two Policy Areas exist within the municipality and each makes reference, where applicable, to the protection and conservation of LNAs and reducing any potential impacts on the natural environment e.g. for Area 5 – The Spectacles, the Policy Area states that "the landscape amenity of the Spectacles Wetlands shall be conserved". #### 2.2.4 City of Kwinana Policy – Development within Special Rural Zones The City of Kwinana Policy – Development within Special Rural Zones (2001) provides guidance to ensure that the use and development within Special Rural Zones is in a manner appropriate to the intentions of the zoning, has minimal impact on neighbouring properties and the environment, and provides guidelines for the protection and rehabilitation of remnant vegetation. #### **RETENTION OF VEGETATION** The Local Government Biodiversity Planning Guidelines for the Perth Metropolitan Region (Del Marco et al. 2004) identified nine guiding principles for conservation and biodiversity planning that are supported by legislation, policy, and research. One of the guiding principles is: the retention of at least 30% of the pre-European extent of each ecological community is required to prevent an exponential loss of species and failure of ecosystem processes (Del Marco et al. 2004) (Figure 3). The National Objectives and Targets for Biodiversity Conservation 2001-2005 (Commonwealth of Australia 2001) also recognise that the retention of 30% or more of the pre-European extent of each ecological community is necessary if Australia's biodiversity is to be protected. The retention of original vegetation requires adequate representation of the ecological communities across different landscapes, ecosystems, and among various groups of organisms to maintain sustainable levels of biodiversity. It has been identified that the acceleration of biodiversity decline appears to be caused by habitat fragmentation and becomes significantly greater once the vegetation community drops below the 30% threshold (Miles 2001). Figure 3 – Biodiversity Loss in Relation to Native Vegetation Loss (Smith and Siversten 2001) # **BIODIVERSITY ASSETS** #### **VEGETATION** The City of Kwinana vegetation has been broadly characterised by Beard (1990). The Beard (1990) vegetation associations supported by the City of Kwinana and the remaining extent across a range of contexts are presented in **Table 5** and spatially in **Figure 4.** Table 5 - Pre-European Vegetation within the City of Kwinana (Beard 1990, DBCA 2019) | Extent | Veg.
Associa
tion
No. | Broad Vegetation
Description | Pre
European
Extent (ha) | Current
Extent (ha) | % Pre
European
Extent
Remaining | % Current Extent in DBCA Managed Lands* | |------------------|--------------------------------|---|--------------------------------|------------------------|--|---| | | 6 | Medium woodland; tuart & jarrah | 56,343.01 | 13,362.25 | 23.72 | 9.45 | | | 51 | Sedgeland; reed swamps, occasionally with heath | 1,838.70 | 965.37 | 52.50 | 2.75 | | Swan | 968 | Medium woodland; jarrah,
marri & wandoo | 136,188.20 | 9,017.32 | 6.62 | 1.43 | | Coastal
Plain | 998 | Medium woodland; tuart | 50,867.50 | 18,492.32 | 36.35 | 17.70 | | | 1001 | Medium very sparse wood-
land; jarrah, with low wood-
land; banksia & casuarina | 57,410.23 | 12,660.76 | 22.05 | 3.13 | | | 3048 | Shrublands; scrub-heath on the Swan Coastal Plain | 10,418.06 | 3,043.13 | 29.21 | 8.22 | | | 6 | Medium woodland; tuart & jarrah | 1,477.48 | 547.36 | 37.05 | 0 | | | 51 | Sedgeland; reed swamps, occasionally with heath | 151.17 | 139.53 | 92.30 | 0 | | City of | 968 | Medium woodland;
jarrah, marri & wandoo | 52.80 | 13.08 | 24.77 | 0 | | Kwinana | 998 | Medium woodland; tuart | 4,307.81 | 1,479.46 | 34.34 | 9.34 | | | 1001 | Medium very sparse wood-
land; jarrah, with low wood-
land; banksia & casuarina | 4,694.17 | 1,745.29 | 37.18 | 0.73 | | | 3048 | Shrublands; scrub-heath on the Swan Coastal Plain | 1,328.25 | 176.51 | 13.29 | 1.20 | ^{*}Proportion of pre-European extent Adequate levels of protection are based on widely accepted thresholds relating to original pre-European extent of vegetation remaining. A number of vegetation associations represented in the City of Kwinana are not currently adequately protected. All of the vegetation associations occurring within the City of Kwinana, currently have less than 10% of the original extent occurring within DBCA Managed Lands within the City. Figure 4 – Original and Current Extent of Pre-European Vegetation in the City of Kwinana Further to vegetation associations (Beard 1990) as discussed above, vegetation complexes have also been defined by Heddle et al. (1980) and are based on vegetation in association with landforms and underlying geology. The seven vegetation complexes within the City of Kwinana are described in **Table 6** and presented in **Figure 5**. Table 6 - Vegetation Complexes within the City of Kwinana (Heddle et al. 1980) | Extent | Vegetation
Complex | Description | Pre
European
Extent (ha) | Current
Extent
(ha) | %
Remaining* | |--------------------|---|---|--------------------------------|---------------------------|-----------------| | Swan Coastal Plain | Bassendean
Complex –
central and
south | Vegetation ranges from woodland of Eucalyptus marginata (Jarrah) - Allocasuarina fraseriana (Sheoak) - Banksia species to low woodland of Melaleuca species, and sedgelands on the moister sites. | 87,476.26 | 23,508.66 | 26.87 | | | Cottesloe
complex –
central and
south | Mosaic of woodland of Eucalyptus gomphocephala (Tuart) and open forest of Eucalyptus gomphocephala (Tuart) - Eucalyptus marginata (Jarrah) - Corymbia calophylla (Marri); closed heath on the Limestone outcrops. | 45,299.61 | 14,567.87 | 32.16 | | | Guildford
complex | A mixture of open forest to tall open forest of Corymbia calophylla (Marri) - Eucalyptus wandoo (Wandoo) - Eucalyptus marginata (Jarrah) and woodland of Eucalyptus wandoo (Wandoo) (with rare occurrences of Eucalyptus lane-poolei (Salmon White Gum)). | 9,665.15 | 3,103.70 | 32.11 | | | Herdsman
Complex | Sedgelands and fringing woodland of Eucalyptus rudis (Flooded Gum) - Melaleuca species. | 53,080.99 | 12,467.20 | 23.49 | | | Karrakatta
complex –
central and
south | Predominantly open forest of Eucalyptus gomphocephala (Tuart) - Eucalyptus marginata (Jarrah) - Corymbia calophylla (Marri) and woodland of Eucalyptus marginata (Jarrah) - Banksia species. | 54,573.87 | 33,011.64 | 60.49 | | | Quindalup
complex | Coastal dune complex Local variations include the low closed forest of Melaleuca lanceolata - Callitris preissii the closed scrub of Acacia rostellifera and the low closed Agonis flexuosa forest of Geographe Bay. | 90,513.13 | 4,607.91 | 5.09 | | | Serpentine
River
Complex | Closed scrub of Melaleuca species and fringing woodland of Eucalyptus rudis (Flooded Gum) - Melaleuca rhaphiophylla (Swamp Paperbark) along streams. | 19,855.41 | 1,940.18 | 9.77 | | Extent | Vegetation
Complex | Description | Pre
European
Extent (ha) | Current
Extent
(ha) | %
Remaining* | |-----------------|---|--|--------------------------------|---------------------------|-----------------| | City of Kwinana | Bassendean
Complex –
central and
south | Vegetation ranges from woodland of Eucalyptus marginata (Jarrah) - Allocasuarina fraseriana (Sheoak) - Banksia species to low woodland of Melaleuca species, and
sedgelands on the moister sites. | 4,678.84 | 1,741.09 | 37.21 | | | Cottesloe
complex –
central and
south | Mosaic of woodland of Eucalyptus gomphocephala (Tuart) and open forest of Eucalyptus gomphocephala (Tuart) - Eucalyptus marginata (Jarrah) - Corymbia calophylla (Marri); closed heath on the Limestone outcrops. | 3,789.77 | 1,269.91 | 33.51 | | | Guildford
complex | A mixture of open forest to tall open forest of Corymbia calophylla (Marri) - Eucalyptus wandoo (Wandoo) - Eucalyptus marginata (Jarrah) and woodland of Eucalyptus wandoo (Wandoo) (with rare occurrences of Eucalyptus lane-poolei (Salmon White Gum)). Minor components include Eucalyptus rudis (Flooded Gum) - Melaleuca rhaphiophylla (Swamp Paperbark). | 579.45 | 279.81 | 48.29 | | | Herdsman
Complex | Sedgelands and fringing woodland of Eucalyptus rudis (Flooded Gum) - Melaleuca species. | 1,633.94 | 492.55 | 30.14 | | Extent | Vegetation
Complex | Description | Pre
European
Extent (ha) | Current
Extent (ha) | %
Remain
ing* | |-----------------------------|---|--|--------------------------------|------------------------|---------------------| | City of Kwinana (continued) | Karrakatta
complex –
central and
south | Predominantly open forest of Eucalyptus gomphocephala (Tuart) - Eucalyptus marginata (Jarrah) - Corymbia calophylla (Marri) and woodland of Eucalyptus marginata (Jarrah) - Banksia species. | 1,289.37 | 309.22 | 23.98 | | | Quindalup
complex | Coastal dune complex Local variations include the low closed forest of Melaleuca lanceolata - Callitris preissii the closed scrub of Acacia rostellifera and the low closed Agonis flexuosa forest of Geographe Bay. | 19.47 | 2.77 | 14.22 | | | Serpentine
River Complex | Closed scrub of Melaleuca species
and fringing woodland of Eucalyptus
rudis (Flooded Gum) - Melaleuca
rhaphiophylla (Swamp Paperbark) along
streams. | 3.56 | 2.97 | 83.43 | *Proportion of pre-European extent Of the seven vegetation complexes listed in **Table 6**, two, the Karrakatta complex – central and south and the Quindalup complex have less than 30% of their pre-European extent remaining within the City of Kwinana. A level of 30% of pre-clearing extent is the level below which species loss appears to accelerate exponentially at the ecosystem level (EPA 2008). From purely a biodiversity perspective, a level of 10% of the original extent of a vegetation association is regarded as being a level representing Endangered (EPA 2008) and any clearing which would increase the threat level to a vegetation association should be avoided. Figure 5 – Original Extent of Vegetation Complexes in the City of Kwinana #### 3.2 REGIONAL PARKS, DBCA RESERVES, CITY RESERVES Of the 4,174 ha of pre-European vegetation remaining within the City, over 78% (3,294 ha) is under State Government protection and management, which includes National Parks, State Forests, Nature Reserves, and Conservation Parks managed by DBCA, and Parks and Recreation Reserves of the Metropolitan Region Scheme (MRS). Land categorised as a 5(1)(h) Reserve is land administered under the Land Administration Act (1997) (LA Act) which is vested in the Conservation and Parks Commission of WA that is not a National Park, Conservation Park, Nature Reserve, Marine Park or Marine Nature Reserve. Bush Forever sites are also protected by State processes, and these are discussed in further detail in **Section 3.2.3.** #### 3.2.1 Regional Parks #### 3.2.1.1 Beeliar Regional Park Beeliar Regional Park wetland chain is considered one of the most important lake and wetland systems remaining within the Perth metropolitan region (**Figure 6**). These wetland chains occupy an area of approximately 3,400 ha across the Cities of Melville, Cockburn, and Kwinana, with the southern-most portion (438.81 ha) residing in the City of Kwinana. The Regional Park supports conservation significant flora and fauna species, vegetation communities that were once widespread on the Swan Coastal Plain, holds cultural and spiritually significant Aboriginal values, and aesthetic values (BRPCAC 2006). A management plan was prepared by the Beeliar Regional Park Community Advisory Committee (BRPCAC) in 2006 with the following long-term vision: "Beeliar Regional Park will encompass two quality chains of wetlands and an adjoining coastal foreshore which will support a diversity of wetland and upland habitats and ecosystems. The Park will be managed as a single entity for conservation purposes as well as for a range of sustainable community uses that recognise Aboriginal and non-Aboriginal heritage in a harmonious way." The management plan establishes the principal management directions and identifies key values, objectives, and performance indicators on how to best conserve the natural environment, and how to manage cultural heritage, recreation, sustainable resources and community involvement (BRPCAC 2006). #### 3.2.1.2 Jandakot Regional Park Jandakot Regional Park consists of a collection of fragmented small to large reserves, together forming an area of 2,362 ha. It is located approximately 20 km south of Perth Central Business District within the Cities of Armadale, Canning, Cockburn, Gosnells, Kwinana, and the Shire of Serpentine-Jarrahdale (Figure 6). Approximately 317.90 ha of the Jandakot Regional Park lies within the City. The Regional Park comprises a network of conservation significant ecosystems including wetlands and bushlands, also forming an important link between multiple other reserves throughout the south-east metropolitan Perth region. It contains rare (Threatened) and Priority flora in addition to significant fauna species including reptiles, amphibians, birds and mammals. Furthermore, the park is of heritage value, holding significance to Aboriginal people (DPaW 2010). A management plan was prepared on behalf of the Conservation Commission of Western Australia, with the Department of Environment and Conservation, City of Armadale, City of Cockburn and Town of Kwinana in 2010, with the following long-term vision: "Jandakot Regional Park will be a well-managed park supporting species and habitat diversity in a sustainable manner. The Park will provide for the conservation and preservation of ecological and cultural heritage values, research and education, as well as providing for the recreational needs of the community in a visually harmonious way." The management plan identifies key values and guiding principles, and lists objectives, strategies and performance indicators to track conservation progress (DPaW 2010). #### 3.2.2 DBCA Managed Reserves Land managed by DBCA covers more than 28 million hectares (10%) of land and waters in WA. These lands include national parks, conservation parks and reserves, marine parks and reserves, regional parks, nature reserves, State forest, timber reserves and other land areas reserved under sections 5(1)(g) and 5(1)(h) of the CALM Act for conservation purposes. The DBCA managed conservation estate is vested with the Conservation Commission of WA. A total of 41 DBCA managed reserves occur within the City. This includes one area (Leda Nature Reserve R33581) classified as a Class A Nature Reserve for the conservation of flora and fauna, one reserve (Wandi Nature Reserve R35110) reserved for the conservation of flora, fauna and water, one unnamed reserve (R51658) reserved under Section 5(1)(h) under the CALM Act for conservation and recreation and 37 reserves classified as Crown Freehold managed by DBCA (Table 7). Class A Reserves are afforded protection under the LA Act and have the greatest degree of protection used solely for the purpose of protecting areas of high conservation or community values. Section 5(1)(h) reserves are land administered under the LA Act which is vested in the Conservation and Parks Commission of WA, that is not a National Park, Conservation Park, Nature Reserve, Marine Park or Marine Nature Reserve. DBCA are the agency acknowledged by the Department of Lands as responsible for Crown Freehold Reserves. Table 7 – DBCA Managed Reserves within the City | R 33581 Conservation of Flora and Fauna (Class A) R 36110 Conservation of Flora, Fauna and Water R 51658 Conservation and Recreation R 51658 Conservation R 51658 Conservation and Recreation R 51658 Conservation and Recreation R 51658 Conservation and R 51658 Recreation R 51659 Conservation and R 51658 Recreation R 51651/552 Conservation and R 51651/552 Conservation and R 51651/552 Conservation R 51651/552 Conservation and R 51651/552 Conservation R 51651/552 Conservation and R 51651/552 Conservation | Reserve Identifier
(according to LA Act) | Purpose | Name and Location | Category |
--|---|----------------|----------------------|-------------------------| | Fauna and Water R 51658 Conservation and Recreation Crown Freehold Crown Freehold Unnamed - adjacent to Spectacles Wetland Crown Freehold - Dept Managed 1271/837 Crown Freehold Unnamed - adjacent to Spectacles Wetland Crown Freehold - Dept Managed 1274/564 Crown Freehold Unnamed - adjacent to Spectacles Wetland Spectacles Wetland Crown Freehold - Dept Managed 1315/700 Crown Freehold Unnamed - adjacent to Spectacles Wetland Spectacles Wetland Unnamed - adjacent to Spectacles Wetland Unnamed - adjacent to Spectacles Wetland Spectacles Wetland Spectacles Wetland Crown Freehold - Dept Managed 1315/702 Crown Freehold Unnamed - adjacent to Spectacles Wetland Crown Freehold - Dept Managed 150/150A Crown Freehold Unnamed - adjacent to Spectacles Wetland Spectacles Spectacles Spectacles Spect | | | Leda Nature Reserve | Nature Reserve | | Recreation | R 36110 | | Wandi Nature Reserve | Nature Reserve | | Spectacles Wetland Managed | R 51658 | | Unnamed Reserve | Section 5(1)(h) Reserve | | Spectacles Wetland 1274/564 Crown Freehold Unnamed - adjacent to Spectacles Wetland 1315/700 Crown Freehold Unnamed - adjacent to Spectacles Wetland Managed Crown Freehold - Dept Managed 1315/701 Crown Freehold Unnamed - adjacent to Spectacles Wetland Managed 1315/702 Crown Freehold Unnamed - adjacent to Spectacles Wetland Managed 1315/702 Crown Freehold Unnamed - adjacent to Spectacles Wetland Managed 1319/482 Crown Freehold Unnamed - adjacent to Spectacles Wetland Managed 150/150A Crown Freehold Unnamed - adjacent to Spectacles Wetland Managed 150/151A Crown Freehold Unnamed - adjacent to Spectacles Wetland Managed 1561/840 Crown Freehold Unnamed - adjacent to Spectacles Wetland Managed 1649/599 Crown Freehold Unnamed - adjacent to Spectacles Wetland Managed 1651/552 Crown Freehold Unnamed - adjacent to Spectacles Wetland Managed 1758/697 Crown Freehold Unnamed - adjacent to Spectacles Wetland Unnamed - adjacent to Spectacles Wetland Managed Crown Freehold - Dept Managed 1758/697 Crown Freehold Unnamed - adjacent to Spectacles Wetland Managed 1758/697 Crown Freehold Unnamed - adjacent to Spectacles Wetland Managed Crown Freehold - Dept Managed 1758/697 Crown Freehold Unnamed - adjacent to Spectacles Wetland Managed Crown Freehold - Dept Managed 1758/697 Crown Freehold Unnamed - adjacent to Spectacles Wetland Managed Crown Freehold - Dept Managed 1957/309 Crown Freehold Unnamed - adjacent to Spectacles Wetland Managed Crown Freehold - Dept Managed Crown Freehold - Dept Managed Unnamed - Adjacent to Spectacles Wetland Managed Crown Freehold - Dept Managed Unnamed - Adjacent to Spectacles Wetland Managed Crown Freehold - Dept Managed Unnamed - Adjacent to Spectacles Wetland Managed Crown Freehold - Dept Managed Unnamed - Adjacent to Spectacles Wetland Managed Crown Freehold - Dept Managed | 1091/251 | Crown Freehold | | | | Spectacles Wetland Managed 1315/700 Crown Freehold Unnamed - adjacent to Spectacles Wetland Managed 1315/702 Crown Freehold Unnamed - adjacent to Spectacles Wetland Unnamed - adjacent to Spectacles Wetland Wanaged 1319/482 Crown Freehold Unnamed - adjacent to Spectacles Wetland Wanaged 150/150A Crown Freehold Unnamed - adjacent to Spectacles Wetland Wanaged 150/151A Crown Freehold Unnamed - adjacent to Spectacles Wetland Wanaged 1561/840 Crown Freehold Unnamed - south of De Haer Road Unnamed - adjacent to Spectacles Wetland Wanaged 1649/599 Crown Freehold Unnamed - adjacent to Spectacles Wetland Wanaged 1651/552 Crown Freehold Unnamed - adjacent to Spectacles Wetland Wanaged 1758/697 Crown Freehold Unnamed - adjacent to Spectacles Wetland Wanaged 1957/307 Crown Freehold Unnamed - adjacent to Spectacles Wetland Crown Freehold - Dept Managed 1957/309 Crown Freehold Unnamed - adjacent to Spectacles Wetland Crown Freehold - Dept Managed 1957/309 Crown Freehold Unnamed - adjacent to Spectacles Wetland Managed 1997/19 Crown Freehold Unnamed - adjacent to Spectacles Wetland Managed 2025/572 Crown Freehold Unnamed - adjacent to Spectacles Wetland Crown Freehold - Dept Managed 2025/572 Crown Freehold Unnamed - South of De Crown Freehold - Dept Managed | 1271/837 | Crown Freehold | | • | | Spectacles Wetland Managed 1315/701 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1315/702 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1319/482 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 150/150A Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 150/151A Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 150/151A Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1561/840 Crown Freehold Unnamed – south of De Haer Road Managed 1649/599 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1651/552 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1758/697 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/307 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed | 1274/564 | Crown Freehold | | • | | Spectacles Wetland Managed 1315/702 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1319/482 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 150/150A Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 150/151A Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 150/151A Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1561/840 Crown Freehold Unnamed – south of De Haer Road Managed 1649/599 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1651/552 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1758/697 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/307 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1997/19 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1997/19 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 2025/572 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1907/19 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 2025/572 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 2025/572 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 2025/572 Crown Freehold Unnamed – South of De Crown Freehold - Dept Managed | 1315/700 | Crown Freehold | | • | | Spectacles Wetland Managed 1319/482 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 150/150A Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 150/151A Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 150/151A Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1561/840 Crown Freehold Unnamed – south of De Haer Road Managed 1649/599 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1651/552 Crown Freehold Unnamed – adjacent to
Spectacles Wetland Managed 1758/697 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/307 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1997/19 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 2025/572 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed Crown Freehold Dept Managed | 1315/701 | Crown Freehold | , | • | | Spectacles Wetland Managed 150/150A Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 150/151A Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed Crown Freehold Unnamed – south of De Haer Road Crown Freehold - Dept Managed 1649/599 Crown Freehold Unnamed – adjacent to Spectacles Wetland Town Freehold - Dept Managed Crown Freehold Unnamed – adjacent to Spectacles Wetland Town Freehold - Dept Managed Crown Freehold - Dept Managed Crown Freehold - Dept Managed Town Freehold Unnamed – adjacent to Spectacles Wetland Town Freehold - Dept Managed Town Freehold Unnamed – adjacent to Spectacles Wetland Town Freehold - Dept Managed Unnamed – adjacent to Spectacles Wetland Town Freehold - Dept Managed | 1315/702 | Crown Freehold | | • | | Spectacles Wetland Managed 150/151A Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1561/840 Crown Freehold Unnamed – south of De Haer Road Managed 1649/599 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1651/552 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1758/697 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/307 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed | 1319/482 | Crown Freehold | | • | | Spectacles Wetland Managed 1561/840 Crown Freehold Unnamed – south of De Haer Road Managed 1649/599 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1651/552 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1758/697 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/307 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed | 150/150A | Crown Freehold | | • | | Haer Road Managed 1649/599 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1651/552 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1758/697 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/307 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1997/19 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 2025/572 Crown Freehold Unnamed – south of De Crown Freehold - Dept Managed | 150/151A | Crown Freehold | | • | | Spectacles Wetland Managed 1651/552 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1758/697 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/307 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1997/19 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 2025/572 Crown Freehold Unnamed – south of De Crown Freehold - Dept | 1561/840 | Crown Freehold | | • | | Spectacles Wetland Managed 1758/697 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/307 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1997/19 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 2025/572 Crown Freehold Unnamed – south of De Crown Freehold - Dept | 1649/599 | Crown Freehold | | • | | Spectacles Wetland Managed 1957/307 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Crown Freehold - Dept Managed 1997/19 Crown Freehold Unnamed – adjacent to Spectacles Wetland Crown Freehold - Dept Managed 2025/572 Crown Freehold Unnamed – south of De Crown Freehold - Dept | 1651/552 | Crown Freehold | | | | Spectacles Wetland Managed 1957/309 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 1997/19 Crown Freehold Unnamed – adjacent to Spectacles Wetland Crown Freehold - Dept Managed 2025/572 Crown Freehold Unnamed – south of De Crown Freehold - Dept | 1758/697 | Crown Freehold | | | | Spectacles Wetland Managed 1997/19 Crown Freehold Unnamed – adjacent to Spectacles Wetland Managed 2025/572 Crown Freehold Unnamed – south of De Crown Freehold - Dept | 1957/307 | Crown Freehold | , | • | | Spectacles Wetland Managed 2025/572 Crown Freehold Unnamed – south of De Crown Freehold - Dept | 1957/309 | Crown Freehold | , | • | | · · | 1997/19 | Crown Freehold | | • | | | 2025/572 | Crown Freehold | | • | | Reserve Identifier
(according to LA Act) | Purpose | Name and Location | Category | |---|----------------|---|----------------------------------| | 2048/35 | Crown Freehold | Unnamed – adjacent to
Spectacles Wetland | Crown Freehold - Dept
Managed | | 2048/36 | Crown Freehold | Unnamed – adjacent to
Spectacles Wetland | Crown Freehold - Dept
Managed | | 2048/37 | Crown Freehold | Unnamed – adjacent to
Spectacles Wetland | Crown Freehold - Dept
Managed | | 2048/38 | Crown Freehold | Unnamed – adjacent to
Spectacles Wetland | Crown Freehold - Dept
Managed | | 2048/39 | Crown Freehold | Unnamed – adjacent to
Spectacles Wetland | Crown Freehold - Dept
Managed | | 2079/718 | Crown Freehold | Unnamed – south of De
Haer Road | Crown Freehold - Dept
Managed | | 2129/490 | Crown Freehold | Unnamed – south of De
Haer Road | Crown Freehold - Dept
Managed | | 2146/125 | Crown Freehold | Unnamed – south of De
Haer Road | Crown Freehold - Dept
Managed | | 2781/395 | Crown Freehold | Unnamed – adjacent to
Spectacles Wetland | Crown Freehold - Dept
Managed | | 2781/538 | Crown Freehold | Unnamed – adjacent to
Spectacles Wetland | Crown Freehold - Dept
Managed | | 2781/539 | Crown Freehold | Unnamed – adjacent to
Spectacles Wetland | Crown Freehold - Dept
Managed | | 2781/540 | Crown Freehold | Unnamed – adjacent to
Spectacles Wetland | Crown Freehold - Dept
Managed | | 2781/541 | Crown Freehold | Unnamed – adjacent to
Spectacles Wetland | Crown Freehold - Dept
Managed | | 2781/543 | Crown Freehold | Unnamed – adjacent to
Spectacles Wetland | Crown Freehold - Dept
Managed | | 2781/544 | Crown Freehold | Unnamed – adjacent to
Spectacles Wetland | Crown Freehold - Dept
Managed | | 2781/545 | Crown Freehold | Unnamed – adjacent to
Spectacles Wetland | Crown Freehold - Dept
Managed | | 2781/546 | Crown Freehold | Unnamed – adjacent to
Spectacles Wetland | Crown Freehold - Dept
Managed | | 2972/116 | Crown Freehold | Unnamed – adjacent to
Spectacles Wetland | Crown Freehold - Dept
Managed | | 41/149A | Crown Freehold | Unnamed – adjacent to
Spectacles Wetland | Crown Freehold - Dept
Managed | | 567/119A | Crown Freehold | Unnamed – adjacent to
Spectacles Wetland | Crown Freehold - Dept
Managed | Figure 6 – Regional Parks and DBCA Managed Lands #### 3.2.3 Bush Forever Sites Under the Bush Forever Plan, 51,200 ha of regionally significant bushland areas are protected in 287 Bush Forever sites in Western Australia (Government of Western Australia 2000a). Bush Forever sites are also classified as Environmentally Sensitive Areas (ESAs). 25 The City of Kwinana supports 11 Bush Forever sites covering a total area of 953 ha. Seven Bush Forever sites occur entirely within the City and four are bisected by the City boundary as summarised in **Table 8.** Seven of the Bush Forever sites (or part of them) within the City are managed by the City of Kwinana. Table 8 – Summary of Bush Forever Sites within the City | Bush
Forever
Site | Site Name | Location | Category | |-------------------------|---|---
---| | 67 | Parmelia Avenue
Bushland, Parmelia | Within the City of Kwinana in its entirety | Crown reserve vested in Local
Govern-ment (City of Kwinana),
managed by the City | | 267 | Mandogalup Road
Bushland, Hope Valley | Within the City of Kwinana in its entirety | WAPC | | 268 | Mandogalup Road
Bushland, Mandogalup | Within the City of Kwinana in its entirety | Part managed by the City, part no man-agement authority (private ownership), part Crown reserve vested in Local Gov-ernment (City of Kwinana) | | 269 | The Spectacles | Within the City of Kwinana in its entirety | Part WAPC, part DBCA, part no management agency (private ownership) | | 270 | Sandy Lake and Adjacent
Bush-land, Anketell | Within the City of Kwinana in its entirety | Part WAPC, part DBCA, part no management agency (private ownership) | | 272 | Sicklemore Road
Bushland, Par-melia/
Casuarina | Within the City of Kwinana in its entirety | Part managed by the City, part WAPC, part unallocated Crown land, part drain reserve, part Crown reserve vested in Local Government (City of Kwinana), part no management agency (private owner-ship) | | 273 | Casuarina Prison
Bushland | Within the City of Kwinana in its entirety | Crown reserve vested in Department of Justice | | 346 | Brownman Swamp, Mt
Brown Lake and Adjacent
Bushland, Henderson/
Naval Base | Within the City of Kwinana and the City of Cockburn | Part managed by the City, part DBCA conservation park (Beeliar Regional Park), part Crown reserve vested in Local Gov-ernment, part unallocated crown land, part no management agency (private ownership) | | 347 | Wandi Nature Reserve
and An-ketell Road
Bushland, Wandi/
Oakford | Within the City of
Kwinana and the Shire of
Serpentine - Jarrahdale | Part managed by the City, part DBCA nature reserve, part WAPC (Jandakot Regional Park) | | Bush
Forever
Site | Site Name | Location | Category | |-------------------------|---|---|--| | 349 | Leda and Adjacent
Bushland, Leda | Within the City of
Kwinana and the City of
Rockingham | Part managed by the City, part DBCA nature reserve, part vacant Crown Land, part WAPC, part Crown reserve vested in Local Government (City of Kwinana), part no management agency (private owner-ship) | | 393 | Wattleup Lake and
Adjacent Bush-land,
Wattleup/Mandogalup | Within the City of Kwinana and the City of Cockburn | No management agency (private owner-ship) | Figure 7 – Bush Forever Sites in the City of Kwinana #### 3.2.4 City Reserves and Parks The City currently manages 340.18 ha of bushland within its reserves, as summarised in **Table 9**. Table 9 – Current City of Kwinana Managed Reserves | Number | Reserve Name | Reserve Number | Total Reserve
Area (ha) | Total Bushland
Area Managed
by City (ha) | |--------|-----------------------------------|---------------------------|----------------------------|--| | 1 | Armstrong Rd (Lat 32) x2 | | 18.15 | 18.15 | | 2 | Belgravia Dampland | R49702 | 8.37 | 8.37 | | 3 | Bertram Sanctuary | R49067 | 7.08 | 7.08 | | 4 | Chalk Hill Reserve | R31256 | 0.87 | 0.87 | | 5 | Challenger Beach | R24901 | 7.53 | 3.30^ | | 6 | Chisham Oval Bushland | R36562 | 7.13 | 3.40^ | | 7 | Clementi Rd Reserve | R41746 | 35.32 | 35.32 | | 8 | Cordata Reserve | | 3.06 | 3.06 | | 9 | Darling Chase Reserve | R52765 | 11.41 | 11.41 | | 10 | Depot Swamp Reserve | | 6.77 | 6.30^ | | 11 | Gentle Rd/Golf Course Reserve | R25309 | 36.48 | 36.48 | | 12 | Henley Reserve | R43072, R50531 | 33.50 | 25.00^ | | 13 | Homestead Ridge Reserves x3 | R40218, R40451,
R40453 | 11.92 | 10.78 | | 14 | Honeywood Central (REW 9) | R51952 | 1.56 | 1.56 | | 15 | Honeywood North (Lyon Rd Reserve) | R51580 | 11.10 | 11.10 | | 16 | Honeywood South (Lizard Park) | R51852 R51421 | 7.68 | 7.68 | | 17 | Lake Magenup | R36759 | 28.54 | 23.20^ | | 18 | Living Edge Reserve | R53383 | 1.48 | 1.20^ | | 19 | Wandi Reserve ('Fred's Re-serve') | R52202 | 0.72 | 0.48 | | 20 | McLaughlan Rd | R39964 | 14.90 | 10.70^ | | 21 | Millar-Wellard Rd Reserve | R25684 | 21.96 | 21.96 | | 22 | Postans Reserve | R29626 | 11.17 | 6.00^ | | 23 | Rifle Range Reserve | R32621 R24784 | 26.07 | 26.07 | | 24 | Seagulls Reserve | R46281 | 4.96 | 4.96 | | 25 | Sloans Reserve | R25132 | 21.83 | 12.00^ | | 26 | Squires Ave | R48343 | 0.80 | 0.80 | | Number | Reserve Name | Reserve Number | Total Reserve
Area (ha) | Total Bushland
Area Managed
by City (ha) | |--------|---------------------|----------------|----------------------------|--| | 27 | Sunrise Wetlands | R52361 | 14.68 | 10.60^ | | 28 | Sutherland Reserves | R46708 | 8.15 | 8.15 | | 29 | Thomas Oval | R24302 | 21.70 | 8.10^ | | 30 | Wells Park Reserve | R24575 | 8.91 | 0.90^ | | 31 | Wildflower Reserve | R38747 | 25.65 | 15.50^ | | | | Total | 419.45 | 340.18 | [^] Area provided by the City of Kwinana Figure 8 – City of Kwinana Managed Reserves #### 3.3 THREATENED AND PRIORITY FLORA AND FAUNA SPECIES Any natural area that supports Threatened and Priority flora and fauna species is considered to have conservation value and is considered a Locally Significant Natural Area. The Threatened flora and fauna species are listed for protection under the State BC Act, the Commonwealth EPBC Act or both, whilst Priority flora and fauna species are afforded some protection by DBCA. The DBCA database (DCBA 2021a, 2021b), NatureMap (DBCA 2021c) and Department of Agriculture, Water and the Environment Protected Matters Search Tool (PMST) (DAWE 2021) identified 37 significant flora that are known to occur or have the potential to occur within the City (**Table 10**, **Figure 9**). This includes fifteen flora species pursuant to the Commonwealth EPBC Act and State Biodiversity Conservation Act 2016 (BC Act), four Priority 1, two Priority 2, seven Priority 3 and nine Priority 4 flora species. Eighty significant fauna species were identified as having the potential to occur within the City, which includes 61 birds, five invertebrates, ten mammals and four reptile species (**Table 11**, **Figure 10** series). This comprises 60 fauna species pursuant to the Commonwealth EPBC Act, 59 species pursuant to the BC Act, six Priority 3, and 11 Priority 4 fauna species. Table 10 - Threatened and Priority Flora Species List | Species | EPBC
Conservation
Status | WA
Conservation
Status | Description | Habitat Preference | |--|--------------------------------|------------------------------|--|---| | Synaphea sp.
Fairbridge Farm
(D. Papenfus 696) | Critically
Endan-gered | Critically
Endan-gered | Dense, clumped shrub growing to 0.3-0.6 m high and 0.4-0.8 m wide. Produces yellow flowers on erect spikes 0.07-0.24 m long from September to October. | Grey clayey sand soil with lateritic pebbles. Near winter-wet flats, low woodlands with weedy grasses. | | Synaphea sp.
Serpentine (G.R.
Brand 103) | Critically
Endan-gered | Critically
Endan-gered | Erect, compact shrub growing to 0.3 m high. Produces yellow flow-ers from September to October. | Grey, yellow or
brown sandy clay-
loam soils. Edge of
wetlands, slopes
and flats. | | Caladenia
huegelii | Endangered | Critically
Endan-gered | Tuberous, perennial herb growing to 0.25-0.6 m high, with a single pale green, hairy leaf. Produces 1-2 (rarely 3) distinctive flowers with red and green-cream parts from September to October. | Grey, white or
brown sand,
clay loam soils.
Margins of
swamps, low
depressions and
flats. Mixed jarrah
and Banksia
woodlands. | | Drakaea elastica | Endangered | Critically
Endan-gered | Tuberous, perennial herb growing to 0.1-0.3 m high with a single bright green, glossy, prostrate heart-shaped leaf. Produces distinc-tive flower with red and green-yellow parts from October to November. | Bare patches of
white or grey
sandy soils. Low-
lying situations
adjoining winter-
wet swamps. | | Eucalyptus ×
balanites | Endangered | Critically
Endan-gered | Mallee with rough flaky grey
bark growing to 5-8 m high
and 15 m wide. Produces
white flowers from October to
December or from January to
February. | White-grey sand,
brown sandy loam
soils with lateritic
gravel. Slopes. | | Grevillea
curviloba | Endangered | Critically
Endan-gered | Variable, prostrate shrub with
broad dark green leaves or tall
erect shrub growing to 2 m
high with greyish green leaves.
Produces creamy-white flowers
on short stalks in leaf axils
from September to October. | Sand and sandy
loam soils. Winter-
wet areas, heath. | | Diuris purdiei | Endangered | Endangered | Tuberous, perennial orchid growing to 0.15-0.45 m high. Produces distinct flattened yellow flowers with brown blotches on their underside from September to October. | Grey-black sand,
sandy clay moist
soils. Winter-wet
swamps | | | EPBC | WA | | |
--|------------------------|------------------------|--|--| | Species | Conservation
Status | Conservation
Status | Description | Habitat Preference | | Lepidosperma
rostratum | Endangered | Endangered | Rhizomatous, tufted perennial grass-like sedge growing to 0.5 m high. Produces brown flowers in narrow, spike-like inflorescence and fruits in June to August. | Peaty sand,
sand, clayey
soils. Winter wet
swamps. | | Synaphea sp.
Pinjarra Plain
(A.S. George
17182) | Endangered | Endangered | Erect, clumping shrub growing
to 0.8 m high. Produces yellow
flowers from September to
November. | Sand, loam
and clay soils
sometimes with
laterite. Winter
wet depressions
and flats. | | Andersonia
gracilis | Endangered | Vulnerable | Slender, erect or open straggly shrub growing to 0.1-0.5 m high. Produces pink to pale mauve flowers in ovoid oblong groups of 4-14 on terminal heads from September to November. | White-grey sand,
sandy clay, gravelly
loam soils. Winter
wet areas, near
swamps. | | Drakaea
micrantha | Vulnerable | Endangered | Tuberous, perennial herb growing to 0.15-0.3 m high with a single silvery-grey, prostrate heart-shaped leaf. Produces distinct flower with red and yellow parts from September to October. | Bare patches of
white-grey sandy
soils. Winter wet
swamps, disturbed
areas. | | Diuris
drummondii | Vulnerable | Vulnerable | Tuberous, perennial tall orchid growing to 0.5-1 m high. Produces 3-8 pale yellow flowers from November to January. | Brown sandy
clay, moist peat
soils. Low lying
depressions,
swamps | | Diuris
micrantha | Vulnerable | Vulnerable | Tuberous, perennial orchid growing to 0.3-0.6 m high with a basal tuft of narrow, linear leaves. Produces up to 7 yellow flowers with red-brown markings from August to October. | Brown/black
sandy clay-loam
and clayey soils.
Winter-wet
depressions
and swamps, in
shallow water. | | Eleocharis
keigheryi | Vulnerable | Vulnerable | Tufted, clumping grass like sedge growing to 0.2-0.4 m high and 0.4 m wide with smooth, erect stems and leaves reduced to straw-coloured sheaths. Produces pale green flowers in a narrow, cylindrical flower spike from August to November (December in favourable conditions). | Clay, sandy loam
soils. Emergent
in freshwater
creeks, claypans
and wetlands. | | Species | EPBC
Conservation
Status | WA
Conservation
Status | Description | Habitat Preference | |--|--------------------------------|------------------------------|---|---| | Tetraria
australiensis | Vulnerable | Vulnerable | Tufted perennial grass-
like sedge growing to 1 m
high with cylindrical stems.
Produces brown flowers
following fire. | Grey sand over clay soil. Winter wet depressions, swamps, drainage lines and swamp margins. | | Acacia
lasiocarpa var.
bracteolata
long peduncle
variant (G.J.
Keighery 5026) | | Priority 1 | Spinescent shrub growing
between 0.4-1.5 m high.
Produces yellow flowers in
globular heads from May or
August. | Grey or black
sand over clay
soils. Swampy
areas, winter wet
lowlands. | | Acacia sp. Binningup (G. Cockerton et al. WB 37784) | | Priority 1 | No information. | No information. | | Boronia juncea
subsp. juncea | | Priority 1 | Slender, erect or straggly shrub growing to 0.6-1 m high. Produces pink or purple flowers in April and December. | Dark grey
peaty sandy
soil. Winter wet
depressions,
swamps. | | Lachnagrostis
nesomytica
subsp. paralia | | Priority 1 | Loosely tufted, annual or
short-lived perennial grass
growing to 0.3-0.5 m high.
Produces purple-green
flowers, flowering period
unknown. | Grey-brown
sandy soil.
Coastal areas,
dunes and swales
on Garden Island. | | Poranthera
moorokatta | | Priority 2 | Small, annual herb growing to 0.05 m high. Produces white flowers from October to November. | Clay, sandy
soils. Winter
wet depressions,
dunes and flats. | | Tetraria sp.
Chandala (G.J.
Keighery 17055) | | Priority 2 | Erect sedge growing to 0.7-
1.5 m high. Produces brown
flowers most of the year. | Peaty sandy soil.
Swamps, edges
of wetlands and
damplands. | | Austrostipa
mundula | | Priority 3 | Erect, fine perennial grass growing to 0.6 m high with mostly basal leaves. Produces brown flowers in a linear or elliptic panicle 5-12 cm long from September to November. | Grey sandy soil
with limestone.
Dune slopes,
coastal cliffs,
plains. | | Species | EPBC
Conservation
Status | WA
Conservation
Status | Description | Habitat Preference | |-----------------------------|--------------------------------|------------------------------|--|--| | Cyathochaeta
teretifolia | | Priority 3 | Rhizomatous, clumped, perennial sedge growing to 2 m high and 1.0 m wide. Produces brown-straw flowers from September to January. | Grey sand,
sandy clay
soil. Lowlands,
swamps, creek
edges and
drainage lines. | | Hibbertia
lepthotheca | | Priority 3 | Low shrub 30 cm high and
40 cm wide. Produces yellow
flowers from August to
September. | Dunes,
calcareous sand,
Tamala limestone | | Jacksonia
gracillima | | Priority 3 | Prostrate, spreading or scrambling spindly shrub growing to 0.5-1 m high and 1 m wide. Produces flowers with yellow, red and orange parts from October and November. | Sand and loam
soils. Wetlands,
winter wet flats,
slopes and flats. | | Pimelea
calcicola | | Priority 3 | Erect to spreading shrub growing to 0.2 to 1 m high. Produces white flowers with some pink from September to November. | Brown sandy
loam, white-
grey sandy
soil associated
with limestone.
Coastal
limestone ridges. | | Pithocarpa
corymbulosa | | Priority 3 | Erect to scrambling,
perennial herb growing
between 0.5-1 m high.
Produces white flowers from
January to April. | Sandy loam,
loamy clay soils
with lateritic
gravel. Granite
outcrops, ridges
and slopes. | | Stylidium
paludicola | | Priority 3 | Reed-like perennial herb growing to 0.35-1 m high. Produces pink flowers from October to December. | Peaty sand
over clay soils.
Winter wet
habitats. Marri
and Melaleuca
woodland,
Melaleuca
shrubland. | | Aponogeton
hexatepalus | | Priority 4 | Rhizomatous or cormous, aquatic perennial herb with floating leaves. Produces green-white flowers from May to November. | Clay. Freshwater ponds, rivers, claypans and wetlands. | | Species | EPBC
Conservation
Status | WA
Conservation
Status | Description | Habitat Preference | |-------------------------|--------------------------------|------------------------------|--|---| | Dodonaea
hackettiana | | Priority 4 | Erect shrub or tree growing
to 1-5 m high. Produces
yellow flowers with green
and red parts mainly
between July to October. | Sandy soils,
associated
with limestone
outcropping.
Limestone
ridges, slopes
and dunes. | | Jacksonia
sericea | | Priority 4 | Low spreading shrub growing to 0.6 m high. Produces flowers with yellow and red and orange parts usually from December to February. | grey/white,
yellow/brown
sandy loam soils,
often associated
with limestone.
Limestone ridges,
slopes and flats. | | Kennedia
beckxiana | | Priority 4 | Prostrate or twining shrub or climber. Produces red flowers from September to December. | Sand, loam.
Granite hills &
outcrops. | | Stylidium
ireneae | | Priority 4 | Lax perennial herb growing up to 0.28 m high. Leaves oblanceolate, 0.4 to 2 cm long and 1 to 3 mm wide with an apex subacute to acuminate and entire margin. Leaves and scape are glandular with a racemose inflorescence. Produces pink flowers between October and December. | Sandy loam. Valleys near creek lines, woodland, often with Agonis. | | Stylidium
longitubum | | Priority 4 | Erect annual (ephemeral) herb growing to 0.05-0.12 m high. Produces pink flowers with white markings from October to December. | Sandy clay, clay
soils. Seasonal
wetlands. | | Species | EPBC
Conservation
Status | WA
Conservation
Status | Description | Habitat Preference | |---|--------------------------------|------------------------------
--|--| | Stylidium
striatum | | Priority 4 | Erect perennial herb
growing to 0.5 m high with
basal rosette of leaves.
Produces yellow/pale yellow
flowers with red/maroon
throat markings from
September to November. | Yellow/brown
sand, sandy
clayey loam soils
sometimes with
gravel. Slopes
and flats, laterite. | | Tripterococcus
sp. Brachylobus
(A.S. George
14234) | | Priority 4 | Slender, erect, multi-
stemmed perennial herb
growing to 0.6 m high.
Produces orange-yellow
flowers from October to
February. | Grey-white sand, peaty sand over clay soils. Winter wet flats, shallow depressions, dry flats and slopes. | | Verticordia
lindleyi subsp.
lindleyi | | Priority 4 | Erect shrub growing to 0.2 to 0.75 m high. Produces pink flowers with white fringes from November to January (also known from May). | Sand, sandy clay
soils. Winter-wet
depressions. | Figure 9 – Known Locations of Threatened and Priority Flora Confidential Table 11 - Threatened and Priority Fauna Species List | Lifeform | Common Name | Species | EPBC Act
Conservation
Status | WA Conservation
Status | |--------------|---|-------------------------------|------------------------------------|---| | MAMMAL | Western
Ringtail Possum | Pseudocheirus
occidentalis | Critically
Endangered | Critically
Endangered | | INVERTEBRATE | A Short-tongued
Bee | Leioproctus
douglasiellus | Critically
Endangered | Endangered | | INVERTEBRATE | A Native bee | Neopasiphae simplicior | Critically
Endangered | Endangered | | BIRD | Curlew
Sandpiper | Calidris ferruginea | Critically
Endangered | Critically
Endangered | | BIRD | Great Knot | Calidris tenuirostris | Migratory Species | Critically
Endangered | | BIRD | Eastern Curlew | Numenius
madagascariensis | Critically
Endangered | Critically
Endangered | | BIRD | Northern
Siberian
Bar-tailed Godwit | Limosa lapponica
menzbieri | Migratory Species | Critically
Endangered
Migratory Species | | MAMMAL | Woylie | Bettongia penicillata ogilbyi | Critically
Endangered | Critically
Endangered | | BIRD | Australasian
Bittern | Botaurus poiciloptilus | Migratory Species | Endangered | | BIRD | Baudin's
Cockatoo | Calyptorhynchus
baudinii | Critically
Endangered | Endangered | | BIRD | Carnaby's
Cockatoo | Calyptorhynchus latirostris | Migratory Species | Endangered | | BIRD | Australian
Painted Snipe | Rostratula australis | Endangered | Endangered | | BIRD | Tristan Albatross | Diomedea dabbenena | Endangered | Critically
Endangered | | BIRD | Red Knot | Calidris canutus | Endangered | Endangered | | BIRD | Lesser Sand
Plover | Charadrius mongolus | Endangered | Endangered | | BIRD | Northern Royal
Albatross | Diomedea sanfordi | Endangered
Migratory Species | Endangered | | BIRD | Southern
Giant-Petrel | Macronectes giganteus | Endangered
Migratory Species | Migratory Species | | Lifeform | Common Name | Species | EPBC Act
Conservation
Status | WA Conservation
Status | |--------------|-------------------------------------|--|------------------------------------|---------------------------| | BIRD | Australian Lesser
Noddy | Anous tenuirostris melanops | Vulnerable | Endangered | | BIRD | Forest Red-tailed
Black Cockatoo | Calyptorhynchus
banksii subsp. naso | Vulnerable | Vulnerable | | MAMMAL | Chuditch | Dasyurus geoffroii | Vulnerable | Vulnerable | | BIRD | Malleefowl | Leipoa ocellata | Vulnerable | Vulnerable | | MAMMAL | Australian Sea-
lion | Neophoca cinerea | Vulnerable | Vulnerable | | MAMMAL | Quokka | Setonix brachyurus | Vulnerable | Vulnerable | | BIRD | Australian Fairy
Tern | Sternula nereis nereis | Vulnerable | Vulnerable | | INVERTEBRATE | Carter's
Freshwater
Mussel | Westralunio carteri | Vulnerable | Vulnerable | | BIRD | Blue Petrel | Halobaena caerulea | Vulnerable | | | BIRD | Fairy Prion
(Southern) | Pachyptila turtur subantarctica | Vulnerable | | | BIRD | Soft-plumaged
Petrel | Pterodroma mollis | Vulnerable | | | BIRD | White-capped
Albatross | Thalassarche steadi | Vulnerable | | | BIRD | Indian Yellow-
nosed Albatross | Thalassarche carteri | Vulnerable Migratory Species | Endangered | | BIRD | Black-browed
Albatross | Thalassarche melanophris | Vulnerable Migratory Species | Endangered | | BIRD | Greater Sand
Plover | Charadrius
leschenaultii | Vulnerable Migratory Species | Vulnerable | | BIRD | Southern Royal
Albatross | Diomedea
epomophora | Vulnerable
Migratory Species | Vulnerable | | BIRD | Wandering
Albatross | Diomedea exulans | Vulnerable
Migratory Species | Vulnerable | | BIRD | Shy Albatross | Thalassarche cauta | Vulnerable
Migratory Species | Vulnerable | | BIRD | Campbell
Albatross | Thalassarche impavida | Vulnerable
Migratory Species | Vulnerable | | BIRD | Common
Sandpiper | Actitis hypoleucos | Migratory Species | Migratory Species | | BIRD | Fork-tailed Swift | Apus pacificus | Migratory Species | Migratory Species | | Lifeform | Common Name | Species | EPBC Act
Conservation
Status | WA Conservation
Status | |----------|---|-----------------------------------|------------------------------------|--| | BIRD | Ruddy Turnstone | Arenaria interpres | Migratory Species | Migratory Species | | BIRD | Sharp-tailed
Sandpiper | Calidris acuminata | Migratory Species | Migratory Species | | BIRD | Pectoral
Sandpiper | Calidris melanotos | Migratory Species | Migratory Species | | BIRD | Red-necked Stint | Calidris ruficollis | Migratory Species | Migratory Species | | BIRD | Long-toed Stint | Calidris subminuta | Migratory Species | Migratory Species | | BIRD | White-winged
Black Tern,
White-winged
Tern | Chlidonias leucopterus | Migratory Species | Migratory Species | | BIRD | Gull-billed Tern | Gelochelidon nilotica | Migratory Species | Migratory Species | | BIRD | Caspian Tern | Hydroprogne caspia | Migratory Species | Migratory Species | | BIRD | Black-tailed
Godwit | Limosa limosa | Migratory Species | Migratory Species | | BIRD | Bridled Tern | Onychoprion anaethetus | Migratory Species | Migratory Species | | BIRD | Osprey, Eastern
Osprey | Pandion cristatus | Migratory Species | Migratory Species | | BIRD | Glossy Ibis | Plegadis falcinellus | Migratory Species | Migratory Species | | BIRD | Grey Plover | Pluvialis squatarola | Migratory Species | Migratory Species | | BIRD | Long-tailed
Jaeger, Long-
tailed Skua | Stercorarius
longicaudus | Migratory Species | Migratory Species | | BIRD | Roseate Tern | Sterna dougallii | Migratory Species | Migratory Species | | BIRD | Crested Tern | Thalasseus bergii | Migratory Species | Migratory Species | | BIRD | Wood Sandpiper | Tringa glareola | Migratory Species | Migratory Species | | BIRD | Common
Greenshank | Tringa nebularia | Migratory Species | Migratory Species | | BIRD | Marsh Sandpiper,
Little Greenshank | Tringa stagnatilis | Migratory Species | Migratory Species | | BIRD | Terek Sandpiper | Xenus cinereus | Migratory Species | Migratory Species | | BIRD | Grey-headed albatross | Thalassarche chrysostoma | Migratory Species | Vulnerable | | BIRD | Amsterdam
Albatross | Diomedea amsterdamensis | | Critically
Endangered | | BIRD | Peregrine falcon | Falco peregrinus | | Other specially protected species | | MAMMAL | South-western
Brush-tailed
Phascogale | Phascogale tapoatafa
wambenger | | Species of special conservation interest | | Lifeform | Common Name | Species | EPBC Act
Conservation
Status | WA Conservation
Status | |--------------|--|---|------------------------------------|---------------------------| | INVERTEBRATE | Swan Coastal
Plain Shield-
backed Trapdoor
Spider | Idiosoma sigillatum | | Priority 3 | | BIRD | A Short-tongued
Bee | Leioproctus contrarius | | Priority 3 | | REPTILE | Perth Slider | Lerista lineata | | Priority 3 | | REPTILE | Black-striped
Snake | Neelaps calonotos | | Priority 3 | | REPTILE | Keeled Legless
Lizard (Shark Bay) | Pletholax gracilis subsp. Edelensis | | Priority 3 | | BIRD | Masked Owl
(Southwest) | Tyto novaehollandiae
novaehollandiae | | Priority 3 | | BIRD | Western False
Pipistrelle | Falsistrellus
mackenziei | | Priority 4 | | MAMMAL | Rakali | Hydromys
chrysogaster | | Priority 4 | | MAMMAL | Quenda | Isoodon fusciventer | | Priority 4 | | BIRD | Australian Little
Bittern | Ixobrychus dubius | | Priority 4 | | MAMMAL | Tammar Wallaby | Notamacropus eugenii derbianus | | Priority 4 | | MAMMAL | Western Brush
Wallaby | Notamacropus irma | | Priority 4 | | REPTILE | Lined Soil-crevice
Skink (Dampier) | Notoscincus butleri | | Priority 4 | | BIRD | Blue-billed Duck | Oxyura australis | | Priority 4 | | BIRD | Red-tailed
Tropicbird | Phaethon rubricauda | | Priority 4 | | INVERTEBRATE | Graceful
Sunmoth | Synemon gratiosa | | Priority 4 | | BIRD | Hooded Plover | Thinornis rubricollis | | Priority 4 | Figure 10 – Documented Locations of Threatened and Priority Fauna Confidential | Figure 10b | | | |------------|--------------|--| | | | | | | | | | | | | | | Confidential | | | | | | | | | | | | | | Figure 10d Confidential #### 3.4 THREATENED AND PRIORITY ECOLOGICAL COMMUNITIES Any natural area that is considered to be a
Threatened or Priority Ecological Community (TEC or PEC) is considered to have conservation value as a Locally Significant Natural Area. TECs are listed for protection under either the BC Act, the Commonwealth EPBC Act or both. PECs are afforded some protection by DBCA. A review of DBCA TEC and PEC database (DBCA 2021d) and the EPBC PMST (DAWE 2021) identified four Commonwealth listed TECs and/or its buffer and two State listed TECs as occurring in the City (**Table 12**). The TECs and PECs known to occur in the City and surrounding region (in accordance with the current DBCA database) are presented spatially in **Figure 11**. Table 12 - Threatened and Priority Ecological Communities Occurring within the City | Abbreviated
Identifier | Community Name | Commonwealth
Category | State Category | Presence
within the
City | |---------------------------|--|--------------------------|--------------------------|--------------------------------| | Tuart
woodlands | Tuart (Eucalyptus gomphocephala)
woodlands and forests of the Swan
Coastal Plain | Critically
Endangered | Priority 3 | Yes | | Mound
Springs SCP | Communities of Tumulus Springs
(Organic Mound Springs, Swan Coastal
Plain) | Endangered | Critically
Endangered | Yes | | SCP19b | Woodlands over sedgelands in
Holocene dune swales of the southern
Swan Coastal Plain | Endangered | Critically
Endangered | Buffer
within the
City | | Banksia WL
SCP | Banksia dominated woodlands of the
Swan Coastal Plain IBRA Region | Endangered | Priority 3 | Yes | | SCP21c | Low lying Banksia attenuata
woodlands or shrublands (as a
component of Banksia WL SCP) | Endangered
(part) | Priority 3 | Yes | | SCP22 | Banksia ilicifolia woodlands (as a component of Banksia WL SCP) | Endangered (part) | Priority 3 | Yes | | SCP26a | Melaleuca huegelii - Melaleuca
systena shrublands on limestone
ridges | - | Endangered | Yes | | SCP24 | Northern Spearwood shrublands and woodlands | - | Priority 3 | Yes | | SCP25 | Southern Eucalyptus gomphocephala -
Agonis flexuosa woodlands | - | Priority 3 | Yes | #### 3.4.1 Tuart Woodlands and Forests TEC The Tuart (Eucalyptus gomphocephala) Woodlands and Forests of the Swan Coastal Plain Ecological Community (Tuart Woodlands and Forests TEC) was approved for inclusion as an Endangered TEC under the EPBC Act on 4 July 2019. This ecological community occurs as woodland, forest or other structural forms associated with soils of the Swan Coastal Plain with a prominent tree layer of Eucalyptus gomphocephala as the defining feature (DEE 2019b). The Tuart Woodlands and Forests TEC occurs within the Swan Coastal Plain IBRA region within the Perth subregion, from Jurien, 200 km north of Perth, to Sabina River near Busselton, 225 km south of Perth (DEE 2019c). The distribution of the ecological community is limited by the distribution of Tuart, although Tuart trees do also occur as a component of other vegetation communities, including the nationally listed Banksia woodlands TEC (DEE 2016). Twelve Floristic Community Types (FCTs) from three supergroups described by Gibson et al. (1994) contain Tuart trees as a component of the TEC and these are summarised in **Table 13**. Table 13 - Floristic Community Types Corresponding to the Tuart Woodlands and Forests TEC (Gibson et al. 1994) | FCT | FCT Name | WA
TEC/
PEC | EPBC
TEC | | | |--------|--|-------------------|-------------|--|--| | Superg | group 2 – Seasonal Wetlands | | | | | | 16 | Highly saline seasonal wetlands | | | | | | 17 | Melaleuca rhaphiophylla - Gahnia trifida seasonal wetlands | | | | | | 19b | Woodlands over sedgelands in Holocene dune swales | | | | | | Superg | group 3– Uplands centered on Bassendean Dunes | | | | | | 21a | Central Banksia attenuata - Eucalyptus marginata woodlands | | | | | | Superg | Supergroup 4 - Uplands centered on Spearwood and Quindalup Dunes | | | | | | 24 | Northern Spearwood shrublands and woodlands | Р3 | | | | | 25 | Southern Eucalyptus gomphocephala – Agonis flexuosa woodlands | Р3 | | | | | 26b | Woodlands and mallees on Limestone | | | | | | 28 | Spearwood Banksia attenuata or Banksia attenuata - Eucalyptus woodlands | | | | | | 29a | Coastal shrublands on shallow sands | Р3 | | | | | 30b | Quindalup Eucalyptus gomphocephala and/or Agonis flexuosa woodlands | Р3 | | | | | 30c2 | Woodlands and shrublands on Holocene dunes (re-allocated from 30c and 30a as per Gibson et al. 1994) | | | | | | S11 | Northern Acacia rostellifera - Melaleuca systena shrublands | | | | | #### 3.4.2 Mound Springs SCP (TEC) The Mound Springs SCP TEC is characterised by a continuous discharge of groundwater in raised areas of peat. Flora species recorded in this community include Banksia littoralis, Melaleuca preissiana and Eucalyptus rudis with Agonis linearifolia, Pteridium esculetum, Astartea fascicularis and Cyclosorus interruptus. Several non-vascular plants are also associated with this community (CALM 2006). # 3.4.3 SCP 19b – Woodlands over sedgelands in Holocene dune swales of the southern Swan Coastal Plain The Woodlands over sedgelands in Holocene dune swales (SCP 19b) ecological community occurs in linear damplands and occasionally sumplands between Holocene dunes (DEC 2011). This community typically occurs within close proximity of the coast and is characterised by species such as Acacia rostellifera, Acacia saligna, Xanthorrhoea preissii, Baumea juncea, Ficinia nodosa and Lepidopserma gladiatum (DEC 2011). #### 3.4.4 Banksia Woodlands TEC The Banksia Woodlands of the Swan Coastal Plain Ecological Community (Banksia woodlands TEC) was approved for inclusion as an Endangered TEC under the EPBC Act on 16 September 2016. This ecological community is woodland associated with some soils of the Swan Coastal Plain with a prominent tree layer of Banksia with scattered Eucalypts and other tree species among or emerging above the canopy. The understorey is comprised of a species rich mix of sclerophyllous shrubs, graminoids and forbs (TSSC 2016). The Banksia woodlands TEC is largely restricted to the Swan Coastal Plain IBRA bioregion, within the Perth (SWA02) and Dandaragan (SWA01) sub-regions. It extends into the adjacent Jarrah Forrest IBRA region (JA01 and JA02 sub-regions) and areas of the Whicher and Darling escarpments where pockets of Banksia woodland may occur. This TEC mainly occurs on deep Bassendean and Spearwood sands or occasionally on Quindalup sands at the eastern edge (Threatened Species Scientific Committee (TSSC) 2016). Twenty-one FCTs from three supergroups described by Gibson et al. (1994) in Bush Forever (Government of Western Australia 2000), Keighery et al. (2012), and Urban Bushland Council (2011) best correspond to the Banksia woodlands TEC (TSSC 2016) which are summarised in **Table 14.** Table 14 - Floristic Community Types Corresponding to the Banksia Woodlands TEC | FCT | FCT Name | WA TEC/PEC | EPBC TEC | |--------|---|--------------------------|------------| | Superg | group 3 – Uplands centered on Bassendean Dunes and Dandaragan F | Plateau | | | 20a | Banksia attenuata woodlands over species rich dense shrublands | Endangered | | | 20b | Eastern Banksia attenuata and/or Eucalyptus marginata woodlands | Endangered | | | 20c | Eastern shrublands and woodlands | Critically
Endangered | Endangered | | 21a | Central Banksia attenuata - Eucalyptus marginata woodlands | | | | 21b | Southern Banksia attenuata woodlands | P3 | | | 21c | Low lying Banksia attenuata woodlands or shrublands | P3 | | | 22 | Banksia ilicifolia woodlands | P3 | | | 23a | Central Banksia attenuata - Banksia menziesii woodlands | | | | 23b | Northern Banksia attenuata - Banksia menziesii woodlands | Р3 | | | 23c | North-eastern Banksia attenuata - Banksia menziesii woodlands | | | | S09 | Banksia attenuata woodlands over dense low shrublands | | | | FCT | FCT Name | WA TEC/PEC | EPBC TEC | |--------|---|------------|----------| | Superg | group 4 – Uplands centered on Spearwood and Quindalup Dunes | | | | 24 | Northern Spearwood shrublands and woodlands | Р3 | | | 25 | Southern Eucalyptus gomphocephala – Agonis flexuosa woodlands | P3 | | | 28 | Spearwood Banksia attenuata or Banksia attenuata – Eucalyptus woodlands | | | | Which | er Scarp FCTs (Keighery et al. 2012) | | | | A1 | Central Whicher Scarp Mountain Marri Woodland WHSFCT_A1 | P1 | | | A2 | North Whicher Scarp Jarrah and Woody Pear woodland WHSFCT_ A2 | | | | А3 | North Whicher Scarp Banksia and Woody Pear woodland WHSFCT_A3 | | | | A4 | Whicher Scarp Banksia grandis, Jarrah and Marri woodland WHSFCT_A4 | | | | B1 | Swan Coastal Plain / North Whicher Scarp Banksia attenuata woodland WHSFCT_B1 | | | | B2 | West Whicher Scarp Banksia attenuata woodland WHSFCT_B2 | | | | C2 | Whicher Scarp Jarrah woodland on deep coloured sands WHSFCT_C2 | | | # 3.4.5 SCP 21c - Banksia attenuata and/or Eucalyptus marginata woodlands of the eastern side of the Swan Coastal Plain (part of Banksia woodlands TEC) This community occurs on the Bassendean soil system between low dunes and interwoven wetlands extending from Gingin to Bunbury. It is significantly less species rich than the other sub-groups with an average of 40 species per site. The community may be dominated by Melaleuca preissiana, Banksia attenuata, Banksia menziesii, Regelia ciliata, Eucalyptus marginata or Corymbia calophylla (DEE 2016). # 3.4.6 SCP 22 - Shrublands and woodlands of the eastern side of the Swan Coastal Plain (part of Banksia woodlands TEC) This community occupies low lying sites and supports Banksia ilicifolia and Banksia attenuata woodlands with Melaleuca
preissiana also recorded. The community typically has an open understorey and may be seasonally waterlogged (DEE 2016). #### 3.4.7 SCP 26a - Melaleuca huegelii - Melaleuca systena Shrublands The Melaleuca huegelii – Melaleuca systena shrublands of limestone ridges (SCP 26a) is defined as comprising of species rich thickets, heaths or scrubs dominated by Melaleuca huegelii, M. systena (previously M. acerosa), Dryandra sessilis over Grevillea preissii, Acacia lasiocarpa and Spyridium globulosum, occurring on skeletal soil on ridge slopes and ridge tops (Gibson et al. 1994). City of Kwinana City of Kwinana #### 3.4.8 SCP 24 – Northern Spearwood Shrublands and Woodlands The Northern Spearwood shrublands and woodlands (SCP 24) is defined as heaths with scattered Eucalyptus gomphocephala occurring on deeper soils north from Woodman Point. Most sites occur on the Cottesloe unit of the Spearwood system. The heathlands in this group typically include Dryandra (Banksia) sessilis, Calothamnus quadrifidus and Schoenus grandiflorus (TSSC 2016). Other species typical for this community are Lepidosperma angustatum, Desmocladus flexuosus, Melaleuca systena, Xanthorrhoea preissii, Phyllanthus calycinus, Dianella revoluta, Conostylis aculeata and Lomandra maritima (Gibson et al. 1994). #### 3.4.9 SCP 25 - Southern Eucalyptus gomphocephala - Agonis flexuosa Woodlands The Southern Eucalyptus gomphocephala - Agonis flexuosa Woodlands is a community type centred on the Spearwood and Quindalup system. SCP 25 occurs south of Woodman Point on the Cottesloe unit of the Spearwood system and is significantly richer in species than the northern group of Eucalyptus gomphocephala communities. Typical shrub species to occur are Hibbertia hypericoides, Macrozamia riedlei and Phyllanthus calycinus (Gibson et al. 1994). Figure 11 – Threatened and Priority Ecological Communities 53 City of Kwinana LOCAL BIODIVERSITY STRATEGY #### 3.5 WATERWAYS AND WETLANDS The Geomorphic Wetlands of the Swan Coastal Plain dataset displays the location, boundary, geomorphic classification (wetland type) and management category of wetlands within the City of Kwinana. Wetland management categories are based on their ecological, hydrological and geomorphological significance, and the degree of disturbance that has occurred. The three Wetland Management Categories on the Swan Coastal Plain can be summarised as follows: - Conservation Category (CC) wetlands that support a high level of ecological attributes and functions (generally having intact vegetation and natural hydrological processes), or that have a reasonable level of functionality and are representative of wetland types that are rare or poorly protected. - Resource Enhancement (RE) wetlands that have been modified (degraded) but still support substantial ecological attributes (wetland dependant vegetation covering more than 10%) and functions (hydrological properties that support wetland dependent vegetation and associated fauna) and have some potential to be restored to CC quality. Typically, such wetlands still support some elements of the original native vegetation, and hydrological function. - Multiple Use (MU) wetlands that are assessed as possessing few remaining ecological attributes and functions. While such wetlands can still play an important role in regional or landscape ecosystem management, including water management, they are considered to have low intrinsic ecological value. Typically, they have very little or no native vegetation remaining (less than 10%). Conservation Category and Resource Enhancement wetlands are of ecological value and afforded protection through the planning process. A total of 167 Geomorphic Wetlands of the Swan Coastal Plain are located within the City, including 50 Conservation Category wetlands (**Appendix A**), 61 Resource Enhancement, 49 Multiple Use and seven 'Not Applicable' wetlands. The Conservation Category and Resource Enhancement wetlands of the Swan Coastal Plain occurring within the City are spatially presented in **Figure 12**. Figure 12 – Geomorphic Wetlands of the Swan Coastal Plain 55 #### 3.6 REGIONAL AND LOCAL ECOLOGICAL LINKAGES Land clearing is a fundamental pressure on the environment and causes the loss, fragmentation and degradation of native vegetation (Jackson et. al. 2016). The viability of any natural area depends on its size, proximity to other LNAs, and the quality of linkages or barriers in the landscape between them (Del Marco et al 2004, Davis and Brooker 2008, Molloy et al 2009). Ecological linkages facilitate the movement of wildlife and connect significant vegetation, habitat and landscape features (City of Wanneroo 2018). Local and regional linkages identified within the City generally run north to south or, to a lesser extent, east to west. Proposed local ecological linkages as presented in the City's draft Local Planning Strategy (2021a) connect Perth Biodiversity Project (PBP) regional linkages (Figure 13). Figure 13 – Regional and Local Ecological Linkages #### THREATS TO BIODIVERSITY Land clearing is a fundamental pressure on the environment and causes the loss, fragmentation and degradation of native vegetation (Jackson et. al. 2016). The viability of any natural area depends on its size, proximity to other LNAs, and the quality of linkages or barriers in the landscape between them (Del Marco et al 2004, Davis and Brooker 2008, Molloy et al 2009). Ecological linkages facilitate the movement of wildlife and connect significant vegetation, habitat and landscape features (City of Wanneroo 2018). Local and regional linkages identified within the City generally run north to south or, to a lesser extent, east to west. Proposed local ecological linkages as presented in the City's draft Local Planning Strategy (2021a) connect Perth Biodiversity Project (PBP) regional linkages (Figure 13). #### 3.7.1 Invasive Species Invasive species pose a threat to local biodiversity as they displace native species and limit recruitment of endemic flora by outcompeting them for resources such as food, water, light and shelter, and often don't have natural predators to keep them under control. Weeds are also a fire hazard, increasing fuel load and the likelihood of initiating a bushland fire. Feral/introduced animals are another example of invasive species, where they displace and outcompete local fauna for resources, reducing native population numbers through limiting reproduction opportunities and predation (City of Swan 2015). #### 3.7.2 Fragmentation from Clearing Agricultural practices have led to a decline in natural areas over time, resulting in a fragmented landscape. Genetic dispersal in the form of seeds and pollen for flora becomes restricted while smaller fragmented habitats are more susceptible to degradation. Movement across the landscape for local fauna is also made more difficult. Further clearing and increased habitat fragmentation poses an ongoing threat to native species (City of Swan 2015). #### 3.7.3 Land Use and Development Poor land use planning and development practices with lack of consideration for biodiversity values pose a threat to local species (City of Swan 2015). Subdivision and development of the landscape can result in reduced functional natural areas and ecological linkages, decreased remnant vegetation communities, and altered wetlands and watercourses (Shire of Kalamunda 2008). #### 3.7.4 Altered Hydrology and Erosion Clearing and development can alter natural wetlands and watercourses. Changes in water availability influence species assemblages and habitat suitability. Increased nutrient run-off and pollutants from developments can cause eutrophication (algal blooms), increase in weeds, and death of aquatic life in wetlands. Greater stormwater discharge into creek lines causes erosion in natural areas, causing sedimentation and further contribution to eutrophication downstream (Shire of Kalamunda 2008). #### 3.7.5 Pathogens Pathogens such as Phytophthora Dieback and Marri Canker (Quambalaria coyrecup) pose a threat to biodiversity by causing death to endemic flora and altering vegetation structure. Ongoing spread of pathogens occurs through soil or plant material movement from infested to non-infested areas (City of Swan 2015). #### 3.7.6 Degradation of Natural Areas Natural areas can be impacted by off-road driving activities and rubbish dumping. Offroad driving often results in damage to vegetation and ongoing erosion, as well as the introduction of weeds and potentially contaminants from hydrocarbon spills. Illegal dumping can include various waste, stolen or abandoned vehicles and garden waste. Dumped garden waste can pose a threat to biodiversity through the introduction of weeds which will compete with native species for nutrients, water and space. Other rubbish dumped illegally could potentially also contain other environmental contaminants harmful to biodiversity, such as hydrocarbons. #### 3.7.7 Global and Regional Threats Climate change predictions pose an ongoing threat to local biodiversity. Rises in sea level will affect coastal biodiversity while a warmer and drier climate can result in an increase in droughts, storms and bushfires leading to loss of habitat and species extinctions over time (City of Canning 2018). ## 4 BIODIVERSITY PLANNING PRECINCTS LNAs within the City were divided into five planning precincts that are primarily based on zoning within the MRS to determine the proportion of remnant vegetation and rate of decline within each precinct. The Biodiversity Planning precincts are categorised as follows: - Precinct1 Urban precinct Includes all areas that have been zoned as Urban or Urban deferred - Precinct 2 Rural precinct Includes all areas that have been zoned as Rural or Rural – Water Protection - Precinct 3 Industrial precinct Includes all areas that have been zoned as Industrial, Special industrial and Port installations - Precinct 4 Public purposes precinct Includes all areas that
have been zoned as high school, prison, special uses, Water Authority of WA, primary regional roads, other regional roads and railways - Precinct 5 Parks and recreation precinct Includes all areas zoned as parks and recreation. A summary of remnant vegetation occurring within each of these precincts (**Table 15**, **Figure 14** series) indicates that remnant vegetation has declined in all precincts over a five-year period, since 2015, except for Category 5 – Parks and recreation. The largest decline in vegetation occurred within the Urban precinct, exhibiting a decline of 36.46% over five years. These results highlight the need to place greater emphasis on the urban precinct when prioritising LNAs for protection. Table 15 – Remnant Vegetation within the City of Kwinana | Precinct | Remnant
Vegetation in
2015 (ha) | Current (2020)*
Remnant
Vegetation (ha) | % Change in
Vegetation Extent
2015 2020 | |-----------------------------------|---------------------------------------|---|---| | Category 1 – Urban | 756.17 | 480.47 | -36.46 | | Category 2 – Rural | 1,303.30 | 1216.28 | -6.68 | | Category 3 – Industrial | 242.24 | 199.20 | -17.77 | | Category 4 – Public purposes | 450.83 | 432.85 | -3.99 | | Category 5 – Parks and recreation | 1,842.14 | 1,854.73 | +0.68 | | TOTAL | 4,594.68 | 4,183.54 | | ^{*}Latest available data from DPIRD 2020 Figure 14 – Biodiversity Planning Precincts 2 City of Kwinana LOCAL BIODIVERSITY STRATEGY Figure 14b # 5 VEGETATION INVENTORY AND RETENTION TARGETS Retention of at least 30% of the pre-European extent of each ecological community is required to prevent an exponential loss of species and failure of ecosystem processes (Del Marco et. al. 2004). 63 In order to establish targets for the retention of vegetation in the City, an inventory of the current retention levels, in comparison to pre-European extent, within each of the Precincts of the City have been determined, as outlined in **Table 16** and **Table 17**. The City of Kwinana lies within the Perth metropolitan area and as such, generally, the 10% retention target applies. This LBS aims to protect and enhance the City's natural areas and therefore the higher retention target of 30% has been applied to all precincts. All vegetation associations and complexes were allocated a retention category; the percentage of the current remaining extent of vegetation within the City of Kwinana. The retention categories are defined as follows: - Well Retained (>50% pre-European vegetation extent remaining) - Adequately Retained (50 35% pre-European vegetation extent remaining) - Close to Retention Target (35% 30% pre-European vegetation extent remaining) - Under Retention Target No Further clearing (<30% pre-European vegetation extent remaining). It is important to note that whilst the 30% retention target may be considered 'best practice', in certain precincts such as Precinct 1 – Urban, and Precinct 3 – Industrial, due to the extensive clearing already occurring within these precincts, the retention target of 30% is unlikely to be achievable, and therefore, the lower retention target of 10% may apply. Table 16 – Retained Vegetation Associations within each Precinct in the City of Kwinana | | Vegetation Associations (Beard 1990) | | | | | | |----------------------------|--------------------------------------|--|-------------------------|--|---|--| | Precinct | Association | Pre
European
Extent
across the
City (ha) | 2020
Extent
(ha)* | % of Pre
European
Extent
Remaining
in 2020 | Retention Category | | | | 6 | 66.51 | 9.60 | 14.43 | Under Retention Target -
No Further clearing | | | | 968 | 12.60 | 0.52 | 4.13 | Under Retention Target -
No Further clearing | | | Precinct 1 –
Urban | 998 | 1,371.52 | 135.88 | 9.91 | Under Retention Target –
No Further clearing | | | | 1001 | 1,432.20 | 325.35 | 22.72 | Under Retention Target -
No Further clearing | | | | TOTAL | 2,882.83 | 471.35 | 16.35 | - | | | | 6 | 888.91 | 124.93 | 14.05 | Under Retention Target -
No Further clearing | | | | 51 | 1.06 | 1.62 x
10-3 | 0.15 | Under Retention Target -
No Further clearing | | | Precinct 2 –
Rural | 968 | 26.87 | 5.72 | 21.29 | Under Retention Target -
No Further clearing | | | | 998 | 882.55 | 174.96 | 19.82 | Under Retention Target -
No Further clearing | | | | 1001 | 2,418.34 | 912.29 | 37.72 | Adequately Retained | | | | TOTAL | 4,217.73 | 1,217.90 | 28.87 | - | | | | 998 | 315.45 | 107.53 | 34.09 | Close to Retention Target | | | Precinct 3 –
Industrial | 3048 | 1074.01 | 90.68 | 8.44 | Under Retention Target -
No Further clearing | | | | TOTAL | 1,389.46 | 198.21 | 14.26 | - | | | | | | Vegetatio | n Associatior | ns (Beard 1990) | |------------------------------------|-------------|--|-------------------------|--|---| | Precinct | Association | Pre
European
Extent
across the
City (ha) | 2020
Extent
(ha)* | % of Pre
European
Extent
Remaining
in 2020 | Retention Category | | | 6 | 108.95 | 42.86 | 39.34 | Adequately Retained | | | 51 | 3.82 | 0.57 | 14.92 | Under Retention Target - No Further
clearing | | Precinct
4 – Public
purposes | 968 | 5.88 | 0.34 | 5.78 | Under Retention Target - No Further clearing | | | 998 | 656.91 | 272.28 | 41.45 | Adequately Retained | | | 1001 | 314.11 | 94.69 | 30.15 | Close to Retention Target | | | 3048 | 141.10 | 22.36 | 15.85 | Under Retention Target - No Further clearing | | | TOTAL | 1,230.77 | 433.10 | 35.19 | - | | | 6 | 412.71 | 374.54 | 90.75 | Well Retained | | | 51 | 146.21 | 140.77 | 96.28 | Well Retained | | Precinct 5 – | 968 | 6.78 | 6.35 | 93.66 | Well Retained | | Parks and | 998 | 1,078.81 | 808.58 | 74.95 | Well Retained | | recreation | 1001 | 528.69 | 456.71 | 86.38 | Well Retained | | | 3048 | 104.18 | 67.11 | 64.42 | Well Retained | | | TOTAL | 2,277.39 | 1,854.06 | 81.41 | | | GRAND TOTAL | | 11,998.19 | 4,174.62 | 34.80 | | ^{*}Latest available data from DPIRD 2020 Table 17 – Retained Vegetation Complexes within each Precinct in the City of Kwinana | | Vegetation Associations (Beard 1990) | | | | | |----------------------------|--------------------------------------|--|-------------------------|--|---| | Precinct | Association | Pre
European
Extent
across the
City (ha) | 2020
Extent
(ha)* | % of Pre
European
Extent
Remaining
in 2020 | Retention Category | | | Bassendean
complex – c&s | 1249.16 | 300.64 | 24.07 | Under Retention Target -
No Further clearing | | | Cottesloe
complex - c&s | 986.28 | 67.65 | 6.86 | Under Retention Target -
No Further clearing | | Precinct 1 –
Urban | Herdsman
Complex | 227.36 | 31.76 | 13.97 | Under Retention Target -
No Further clearing | | Orban | Karrakatta
complex - c&s | 420.03 | 71.30 | 16.97 | Under Retention Target -
No Further clearing | | | Serpentine River complex | 2.0 x 10-6 | 0 | 0 | NA | | | TOTAL | 2882.83 | 471.35 | 16.35 | - | | | Bassendean
complex - c&s | 2503.14 | 849.66 | 33.94 | Close to Retention Target | | | Cottesloe
complex - c&s | 681.65 | 135.91 | 19.94 | Under Retention Target -
No Further clearing | | | Guildford
complex | 19.47 | 2.77 | 14.23 | Under Retention Target -
No Further clearing | | Precinct 2 –
Rural | Herdsman
Complex | 138.91 | 81.27 | 58.51 | Well Retained | | | Karrakatta
complex - c&s | 874.14 | 148.14 | 16.95 | Under Retention Target -
No Further clearing | | | Serpentine River complex | 0.42 | 0.15 | 35.71 | Adequately Retained | | | TOTAL | 4217.73 | 1217.90 | 28.88 | - | | | Cottesloe
complex - c&s | 490.59 | 123.35 | 25.14 | Under Retention Target -
No Further clearing | | Precinct 3 –
Industrial | Quindalup
complex | 888.53 | 74.00 | 8.33 | Under Retention Target -
No Further clearing | | | TOTAL | 1379.12 | 197.35 | 14.31 | - | | | | | Vegetation | ı Associations | s (Beard 1990) | |------------------------|--------------------------------|--|-------------------------|--|---| | Precinct | Association | Pre
European
Extent
across the
City (ha) | 2020
Extent
(ha)* | % of Pre
European
Extent
Remaining
in 2020 | Retention Category | | | Bassendean
complex
- c&s | 311.00 | 91.51 | 29.42 | Under Retention Target -
No Further clearing | | | Cottesloe
complex -
c&s | 583.90 | 180.24 | 30.87 | Close to Retention Target | | Precinct | Herdsman
Complex | 23.40 | 4.63 | 19.79 | Under Retention Target -
No Further clearing | | 4 – Public
purposes | Karrakatta
complex -
c&s | 104.88 | 53.58 | 51.09 | Well Retained | | | Quindalup
complex | 207.51 | 103.06 | 49.67 | Adequately Retained | | | Serpentine
River
complex | 0.08 | 0.08 | 100 | Well Retained | | | TOTAL | 1230.77 | 433.10 | 35.19 | Adequately Retained | | | Bassendean
complex -
c&s | 615.52 | 536.74 | 87.2 | Well Retained | | | Cottesloe
complex -
c&s | 1046.87 | 778.86 | 74.4 | Well Retained | | Precinct 5 – | Herdsman
Complex | 189.77 | 176.88 | 93.21 | Well Retained | | Parks and recreation | Karrakatta
complex -
c&s | 234.90 | 218.27 | 92.92 | Well Retained | | | Quindalup
complex | 187.27 | 140.57 | 75.06 | Well Retained | | | Serpentine
River
complex | 3.06 |
2.74 | 89.54 | Well Retained | | | TOTAL | 2277.39 | 1854.06 | 81.41 | Well Retained | | GRAND TOTAL | | 11998.19 | 4174.62 | 34.80 | | Based on the current pre-European vegetation extents remaining within each precinct, a target retention level of 30% was applied. Numerous vegetation associations and vegetation complexes within each precinct fall below the 30% retention target as summarised in **Table 18** and spatially presented in **Figure 15.** Table 18 – Summary of Vegetation Associations and Complexes with Less Than 30% Remaining within the City | Precinct | Associations | Complexes | |-----------------------------------|-------------------------|---| | Precinct 1 – Urban | 6
968
998
1001 | Bassendean complex – central and south Cottesloe complex – central and south Herdsman Complex Karrakatta complex – central and south | | Precinct 2 – Rural | 6
51
968
998 | Cottesloe complex – central and south Guildford complex Karrakatta complex – central and south | | Precinct 3 – Industrial | 3048 | Cottesloe complex – central and south Quindalup complex | | Precinct 4 – Public purposes | 51
968
3048 | Bassendean complex - central and south Herdsman Complex | | Precinct 5 – Parks and recreation | NA | NA | Figure 15 – Biodiversity Planning Precincts Vegetation Retention Targets 69 Figure 15b Figure 15c 2 City of Kwinana LOCAL BIODIVERSITY STRATEGY Figure 15d Figure 15e 73 # 6 LOCAL NATURAL AREA VALUES AND PRIORITISATION #### 6.1 DEGRADATION OF NATURAL AREAS Natural area prioritisation provides an effective tool for strategically identifying areas with existing or potential high conservation values and informing future land use decisions (Nam Natura 2021) and identifies priority areas for protection and conservation. The purpose of the prioritisation process is to identify LNAs where multiple biodiversity values overlap as they can provide a good opportunity to meet conservation needs for multiple species or ecosystems (Nam Natura 2020). LNAs considered to be of high priority should be considered for formal protection to prevent degradation and optimise opportunities for enhancement. Guidelines on determining prioritisation of LNAs were developed as part of the Perth Biodiversity Project (Del Marco et al. 2004) and have been adapted for prioritisation of LNAs within the City of Kwinana, as part of this LBS. Prioritisation considers two categories of criteria: - 1. Regional conservation significance criteria, supported by legislation and policy (EP Act, BC Act and EPA Guidance Statement No 33), in the following categories: - Representation - Rarity - Diversity - · Wetland, streamline, estuarine, coastal vegetation - Maintenance of ecological functions (patch size and connectivity). - 2. Locally significant vegetation and local ecological linkages as outlined in the Local Government Biodiversity Planning Guidelines (Del Marco et al. 2004). Due to the large number of LNAs within the City, prioritisation within this LBS was restricted to those LNAs identified to be of high conservation value, or that do not occur within areas already receiving management and protection. In order to determine the LNAs of high conservation value, an initial screening was conducted. Each LNA was analysed with the aid of current available spatial data and was determined to be of high conservation value if it: - · supports known areas of TECs or occurs within a TEC buffer - supports known populations of Threatened Flora - contains vegetation complexes with <10% remaining within the Swan Coastal Plain IBRA Region - is within 5 km of a confirmed Black-cockatoo breeding site or its buffer. Other criteria such as the presence of Threatened or Priority fauna were not addressed, due to the mobile nature of animals and the ability of fauna to move throughout their home range. Discussions with the City identified that areas of current and future development are facing imminent threats from clearing and therefore, were nominated to be a focus of prioritisation. Areas of remnant vegetation that occur on the Jandakot Water Mound are afforded some protection from clearing due to the requirement for submission of a Development Application for assessment and approval by the City. All LNAs that do not meet the aforementioned criteria or occur on the Jandakot Water Mound are proposed in this LBS to be prioritised at a later date, as part of future prioritisation efforts as per the strategic actions listed in **Section 6.3**. Areas that were not part of LNAs (Bush Forever, DBCA Managed Lands and Regional Parks) were removed from this dataset in order to limit prioritisation to only the LNAs within the City. Additionally, City reserves and parks that are currently managed by the City, and areas within the Jandakot Mound were not assessed against the prioritisation criteria listed in **Table 19**. The screening to determine LNAs of high conservation value determined that 1,110 areas comprising 1,031.82 ha were relevant for initial prioritisation as part of this LBS (**Figure 17**) (**Appendix B**). In order to prioritise the City's LNAs considered to be of high conservation value, each was assessed against the criteria listed in Table 19 and scored as per the given weightings. The guidelines defined by Del Marco et. al. (2004) were adapted in order to better suit vegetation and LNAs within the City of Kwinana, particularly pertaining to the current extent of vegetation remaining within the city, and the presence of Threatened Ecological Communities. A number of criteria developed by Del Marco et. al. (2004) were not assessed such as 'Natural areas in good or better condition that contain both upland and wetland structural plant communities', due to the lack of available information, and therefore, such criteria were not used. In order to prioritise the City's LNAs considered to be of high conservation value, each was assessed against the criteria listed in **Table 19** and scored as per the given weightings. The guidelines defined by Del Marco et. al. (2004) were adapted in order to better suit vegetation and LNAs within the City of Kwinana, particularly pertaining to the current extent of vegetation remaining within the city, and the presence of Threatened Ecological Communities. A number of criteria developed by Del Marco et. al. (2004) were not assessed such as 'Natural areas in good or better condition that contain both upland and wetland structural plant communities', due to the lack of available information, and therefore, such criteria were not used. The criteria were selected from the list provided in the Perth Biodiversity Project (Del Marco et al. 2004), using criteria that were deemed relevant to the City. The extent of vegetation remaining within each LNA was assessed using the 2020 dataset of remaining pre-European native vegetation extent (DPIRD 2020). Each individual criterion was allocated a score, weighted to reflect the relative importance (ecological value) of each. For example, the presence of Threatened flora receives a higher score than areas that containing Priority flora (Table 19). If a criterion is met within the LNA, the weighted score is applied and if the criterion is not met, no score (0) is applied, with scores totalled, providing a possible score of 46 across the 21 criteria. The score achieved by each LNA provides an indication of the number and importance of criteria being met, the potential for the area to be of conservation value and therefore its priority for action. All definitive decisions regarding actions implemented for each LNA should be supported by field assessments to confirm the biodiversity value of each. Specialist advice will be required to determine the presence or absence of features of conservation and biodiversity significance and importance, and in confirming suitable actions for these LNAs, but guided by this LBS and future iterations of the list of strategic actions. Prioritisation of high conservation value LNAs considered to be under imminent threat are spatially presented in Figure 17 and summarised in Appendix B. All other LNAs not prioritised in this assessment will be prioritised as part of future strategic actions. Figure-16--- LNA-Prioritisation-Methodology1 Figure 16 - LNA Prioritisation Methodology Figure 17 – High Conservation Value Local Natural Areas Figure 18 – Local Natural Areas Prioritisation Table 19 | Criteria
Code | Criteria (PBP 2013) | Spatial Data
Representation | Weighted
Criteria
Score | | | |------------------|---|---|-------------------------------|--|--| | Regional | Regional Representation (Representative of): | | | | | | P1_2a | a vegetation complex with 30% or less
remaining and <10% protected (formal) in the
Swan Coastal Plain IBRA region | Vegetation extent by vegetation complexes | 1 | | | | P1_2b | a vegetation complex with 30% or less remaining in the Swan Coastal IBRA region | Vegetation extent by vegetation complexes | 3 | | | | P1_2c | a vegetation complex with 90-100% of its original extent occurring within the City | Pre-European extent of vegetation complexes in the IBRA region | 1 | | | | P1_2d | a vegetation complex with 60-89% of its original extent occurring within the City | Pre-European extent of vegetation complexes in IBRA region | 1 | | | | P1_3 | large (greater than 20 ha) natural areas | Remnant vegetation in patches greater than 20 ha | 2 | | | | Rarity | | | | | | | P3_3a | Contains a Commonwealth listed
Threatened Ecological Community (TEC) | TEC boundaries (DBCA 2021d) | 4 | | | | P3_3b | Contains a State listed Threatened Ecological Community (TEC) |
TEC boundaries (DBCA 2021d) | 4 | | | | P3_4 | Contains a Priority Ecological Community (PEC) | PEC boundaries (DBCA 2021d) | 1 | | | | P3_5 | Contains Threatened Flora | Threatened flora locations (DBCA 2021a) | 4 | | | | P3_6 | Contains Priority Flora | Priority flora (DBCA 2021a) | 2 | | | | P3_7a | Supports Commonwealth Threatened and specially protected fauna | Threatened fauna (CR, EN,
VU, OS – Other Specially
Protected) (DBCA 2021d) | 4 | | | | P3_7b | Supports State Threatened and specially protected fauna | Threatened fauna (CR, EN, VU, OS – Other Specially Protected) (DBCA 2021b) | 4 | | | | P3_8 | Supports Priority fauna | Priority fauna (DBCA 2021b) | 1 | | | | P3_9a | | Areas requiring investigation
for Carnaby's-cockatoo
foraging habitat (Swan Coastal
Plain) | 2 | | | | P3_9b | Provides significant habitat for significant fauna | Carnaby's Cockatoo habitat -
breeding sites (confirmed and
possible) within 12 km buffer | 2 | | | | P3_9c | | Carnaby's Cockatoo habitat -
roosting sites (confirmed and
unconfirmed) within 6 km
buffer | 2 | | | | Criteria
Code | Criteria (PBP 2013) | Spatial Data
Representation | Weighted
Criteria
Score | |------------------|---|--|-------------------------------| | Maintain | ing ecological processes or natural systems - conr | nectivity | | | P4_1 | Natural areas acting as stepping-stones in a regionally significant ecological link | Connectivity layer - current
remnant vegetation that touches
the Perth Metropolitan Region
Regional Ecological Linkages | 1 | | Protecti | on of wetland, streamline and estuarine fring | ng vegetation and coastal veget | ation | | P5_1 | Remnant vegetation within Conservation
Category Wetlands plus 50 m buffer | Geomorphic wetland mapping (DBCA 2019) | 3 | | P5_1b | Remnant vegetation within Resource
Enhancement Wetlands plus 50 m buffer | Geomorphic wetland mapping (DBCA 2019) | 2 | | Local Re | presentation (Representative of): | | | | P6_1 | a vegetation complex with 10% or less
remaining within the City | Vegetation extent by vegetation complexes within the City | 1 | | P6_2 | a vegetation complex with 30% or less remaining within the City | Vegetation extent by vegetation complexes within the City | 1 | 2 City of Kwinana LOCAL BIODIVERSITY STRATEGY Figure 19 - LNAs of Highest Priority ### 6.2 SUMMARY OF KEY VALUES FOR LNAS WITHIN THE CITY OF KWINANA The key significant values within the LNAs of the City of Kwinana are: - Presence of the following Commonwealth or State listed TECs: - Tuart Woodlands and Forests of the Swan Coastal Plain (Critically Endangered, EPBC Act; Priority 3, DBCA) 83 - Communities of Tumulus Springs (Mound Springs SCP) (Endangered, EPBC Act; Critically Endangered, BC Act) - Woodlands over sedgelands in Holocene Dune swale of the southern Swan Coastal Plain (SCP19b) (Endangered, EPBC Act; Critically Endangered, BC Act) - Banksia Woodlands of the Swan Coastal Plain (Endangered, EPBC Act; Priority 3, DBCA) - Low Lying Banksia attenuata woodlands or shrublands (SCP21c) (Endangered, EPBC Act; Priority 3, DBCA) - Banksia ilicifolia woodlands (SCP22) (Endangered, EPBC Act; Priority 3, DBCA) - Melaleuca huegelii Melaleuca systena shrublands on limestone ridges (SCP26a) (Endangered, BC Act). - Presence of the following PECs: - Northern Spearwood shrublands and woodlands (Priority 3) - Southern Eucalyptus gomphocephala Agonis flexuosa woodlands (Priority 3). - Presence of Vegetation Complexes with less than 30% remaining on the Swan Coastal Plain - Presence of Vegetation Complexes with less than 30% remaining within the City - Presence of Threatened Flora - Presence of Threatened and specially protected Fauna - Representing a stepping-stone in a regionally significant ecological linkage - Remnant vegetation within or within 50 m of a buffer of Conservation Category Wetlands - Remnant vegetation within or within 50 m of a buffer of Resource Enhancement Category Wetlands. Out of the 1,110 areas considered to high conservation LNAs, based on the initial prioritisation as part of this LBS (**Appendix B**), 26 were identified as areas of high priority, with a prioritisation score of 24 or greater (**Table 20, Figure 19**). Table 20 – High Priority LNAs (with a Score of Greater than 24) | Easting (mE)
Northing (mN) | Location | Score | Area (ha) | |-------------------------------|-------------------|-------|------------| | 393777mE 6428820mN | 1 Shipsey Place | 24 | 1.17 | | 392686mE 6428582mN | | 26 | 9.22 | | 392926mE 6428711mN | 173 Braddock Road | 26 | 1.56 | | 393005mE 6428677mN | | 26 | 1.37 | | 393084mE 6428646mN | 159 Braddock Road | 26 | 1.12 | | 393164mE 6428616mN | 151 Braddock Road | 26 | 0.78 | | 393244mE 6428585mN | 149 Braddock Road | 26 | 0.48 | | 392443mE 6431463mN | 24 Lugg Place | 28 | 1.56 | | 392443mE 6431203mN | | 28 | 0.11 | | 392524mE 6431345mN | | 28 | 5.9 x 10-4 | | 392566mE 6431601mN | 28 Lugg Place | 28 | 0.69 | | 392607mE 6430795mN | 12 Nicolas Drive | 28 | 0.09 | | 392613mE 6430999mN | 32 Nicolas Drive | 28 | 0.16 | | 392614mE 6431376mN | 2 Lugg Place | 28 | 0.94 | | 392631mE 6431200mN | 76 Nicolas Drive | 28 | 1.06 | | 392635mE 6430905mN | 24 Nicolas Drive | 28 | 0.38 | | 392638mE 6430647mN | 135 Mortimer Road | 28 | 1.15 | | 392976mE 6430630mN | | 28 | 0.02 | | 393027mE 6431705mN | 165 Mortimer Road | 28 | 44.29 | | 393030mE 6431552mN | | 28 | 1.2 x 10-3 | | 393030mE 6431532mN | | 28 | 1.5 x 10-4 | | 393030mE 6431529mN | 122 Nicolas Drive | 28 | 0.01 | | 393032mE 6431346mN | 168 Nicolas Drive | 28 | 4.5 x 10-3 | | 393033mE 6431254mN | 180 Nicolas Drive | 28 | 2.7 x 10-4 | | 393118mE 6431726mN | 131 Nicolas Drive | 28 | 0.85 | | 393127mE 6431645mN | | 28 | 0.01 | ## 7 BIODIVERSITY VISION, DIRECTIONS **AND ACTIONS** ### 7.1 VISION The City's biodiversity vision is to: Prioritise, protect and enhance the City's natural areas ### STRATEGIC DIRECTIONS To achieve the City's biodiversity vision, the strategic directions (objectives) are to: - 1. Increase the protection status of significant biodiversity in the City, including on local government managed or owned lands, and on private land. - 2. Appropriately manage LNAs to reduce identified threats. - 3. Increase the viability and resilience of LNAs by establishing or enhancing buffers and regional and local ecological linkages. - 4. Achieve long-term community engagement in local biodiversity management. - 5. Embed the consideration of biodiversity as standard in all decisions and activities of the City. | Aspect | Action | Timeframe | |----------------------|--|----------------| | Increase the protect | ction status of significant biodiversity | | | LNAs | Further assess and refine the prioritisation of identified LNAs (Section 5.2), including local reserves, for those LNAs not determined to be of high conservation value as identified in this LBS. | Within 5 years | | | Establish a system to hold new information collected on LNAs by establishing a LNA Inventory and ensure areas are vested for conservation and recreation. | Within 1 year | | Offsets | Where opportunities arise with development applications lodged, secure private land for inclusion in the City's LNAs as part of offset packages, including via development projects. Proponents to fund management of these LNAs for a period of time (sufficient to improve the bushland condition to an acceptable level), before responsibility is returned to the City. Each property shall be subject to a management plan that outlines actions, responsibilities, timeframes and funding avenues. | Ongoing | | | As part of the further assessment and prioritisation of identified LNAs (Section 5.2), determine LNAs with the potential to be purchased as offsets. | Within 5 years | | | Investigate opportunities, via local planning policies, which require new vegetation plantings to offset the clearing of vegetation on private land | | | Classing | Avoid or minimise further clearing of LNAs, especially areas within vegetation associations or complexes for which the current extent of those associations of complexes is close to the 30% retention threshold for that Biodiversity Planning Precinct. | Ongoing | | Clearing | No further clearing of LNAs supporting vegetation associations or complexes for which the current extent of those associations of complexes falls below the 30% retention threshold for that Biodiversity Planning Precinct | | | Illegal clearing | Prosecute instances of illegal clearing under the Planning and Development Act 2005, with funds from infringements contributing to the LBS fund (see below). | Ongoing | | LBS fund | Establish a fund that collects from illegal clearing infringements and utilises those funds for implementing actions as outlined in this LBS. Investigate how any cash-in-lieu for the POS fund may also be used for management of LNAs. | Within 2 years | | Wetlands | Consider amendments to the Local Planning Scheme for areas adjacent to wetlands and wetland buffers, to protect LNAs associated with and adjacent to wetlands. | Within 1 year | | | Retain all remaining vegetated areas classified as CCW and REW Geomorphic Wetlands of the Swan Coastal Plain. | Ongoing | | Aspect | Action | Timeframe | |------------------------------
---|---| | TECs/PECs | Protect, regenerate and restore TEC or PEC vegetation and fauna habitat per "prioritisation". | As per prioritisations made (Section 5.2) | | Rural planning | Consider the prioritisation and retention of biodiversity-significant areas within LNAs associated with rural developments, via appropriate spatial positioning, selection and approval of building envelopes. | Ongoing | | Vegetation retention targets | Establish and plan for the achievement of a set of targets for areas of retained native vegetation (a certain % of each complex, areas of wetlands, etc.) as applicable to the various precincts. | Within 1 year | | Tree Register | Establish and include a significant tree register within the Local Planning Strategy and Scheme | Ongoing | | Appropriately ma | anage LNAs | | | LNAs | For all LNAs that have been identified to be areas of high conservation value, undertake a rapid assessment to ground-truth the status of remnant vegetation, general condition, threats, and apparent opportunities for management and prioritise accordingly. | Within 5 years | | TECs | Undertake a desktop mapping exercise to consolidate the patches of TECs in the City to enable planning and further prioritisation of LNAs. | Within 5 years | | LNA Inventory | Regularly update mapping and information within the established LNA Inventory. | Ongoing, or at least every 2 years | | Wetlands | Protect, restore and manage all vegetated wetlands and buffers within the City. | As per prioritisations made (Section 5.2) | | TECs/PECs | Ensure all proposed development that may impact a LNA which contains TEC, PEC or habitat for significant flora or fauna, has been suitably assessed by ecological specialists. | Ongoing | | Developer
bonds | Collect bonds from developers ensuring appropriate management of LNAs, which the City can utilise for management, if required. | Ongoing | | Aspect | Action | Timeframe | | | | |---|---|---|--|--|--| | Increase buffers and ecological linkages | | | | | | | Ecological linkages | Protect, regenerate and restore vegetation within, and adjacent to defined ecological linkages as per "prioritisation". | As per prioritisations made (Section 5.2) | | | | | Revegetation | Find opportunities for linkages to be rehabilitated, with a focus on the limited eastwest links. | Ongoing | | | | | Wetland buffers | Establish a new Policy for management of wetland buffers on private property. | Within 2 years | | | | | Wedalia ballers | Protect and begin to restore/revegetate buffers of all Geomorphic wetlands within the City. | Ongoing | | | | | TECs/PECs | Protect and begin to restore/revegetate buffers of LNAs containing TECs, PECs or habitat of significant flora or fauna. | Ongoing | | | | | Achieve long term co | mmunity engagement in local biodiversity manage | ment | | | | | Consultation | Carry out public consultation as per usual City procedures to consider feedback from the community for incorporation into the LBS. | Within 5 years | | | | | Stewardships | Formalise an environmental stewardships initiative for private properties that support significant LNAs. | Within 5 years | | | | | Private property
LNA self-
management | Develop a plan to incentivise private property management of LNAs (e.g. 'Wetland Care' and 'Bush Care'), including activities such as providing professional advice and labour for land management activities and/or providing native plants for residents. | Within 5 years | | | | | Landowners
Conservation
Initiative | Develop and implement the Bushland and Wetlands Conservation Initiative (BAWLCI). | Within 5 years | | | | | | Identify and look to manage private properties that support Tuart woodlands and forests. | Within 5 years | | | | | Management of TECs on private | Identify and look to manage private properties that support Banksia woodland. | Within 5 years | | | | | property | Identify ways to support retention, protection and management on private properties that support Tumulus mound springs. | Within 5 years | | | | | \cap | \cap | |--------|--------| | Ч | | | | \cup | | Aspect | Action | Timeframe | | | | |---|---|----------------|--|--|--| | Achieve long term co | Achieve long term community engagement in local biodiversity management (continued) | | | | | | Management of
Threatened and
Priority flora
populations on
private property | Based on current known population data, identify private properties supporting populations of Threatened and Priority flora and look to manage these sites. | Within 5 years | | | | | Industry
sponsorship | Investigate opportunities for private industry (e.g. BHP, Alcoa) in the City to sponsor or fund LBS initiatives. | Within 5 years | | | | | Small business-
friendly approvals | Consider an Action Plan for the development of
small business-friendly environmental approvals
pathways. Identify internal processes to ensure
that the strategic direction is achieved. | Within 5 years | | | | | Implementation status | Provide an update on the implementation status of the Local Biodiversity Strategy within the City's Annual report. | Within 5 years | | | | | Embed biodiversity i | n all decisions and activities of the City | | | | | | Biodiversity procedures | Develop procedures associated with this LBS to ensure that the consideration of biodiversity is standard in all decisions and activities of the City, hand-in-hand with the consideration of sustainability principles. | Ongoing | | | | | Endorsement | Obtain endorsement of the Local Biodiversity Strategy's vision, strategic directions and strategic actions from Council. | Ongoing | | | | ## 8 References Australian Museum (2021) What is biodiversity? https://australian.museum/learn/science/biodiversity/what-is-biodiversity/ Accessed 9 November 2021 Beard, J. S. (1990) Plant Life of Western Australia. Kangaroo Press, Kenthurst NSW. Beeliar Regional Park Community Advisory Committee (BRPCAC) (2006) Beeliar Regional Park Final Management Plan. Plan prepared for the Conservation Commission of Western Australia. Berwick, M. and Thorman, R. (1998) National Local Government Biodiversity Strategy (Berwick and Thorman 1999). City of Canning (2018) Local Biodiversity Strategy. City of Canning. City of Kwinana (1992) Local Planning Scheme No. 2. Unpublished document prepared by the City of Kwinana. City of Kwinana (2014) Kwinana Natural Areas Management Plan 2014-24. Unpublished document prepared by the City of Kwinana. City of Kwinana (2018) Environmental Education Strategy (2019 – 2024). December 2018. Unpublished document prepared by the City of Kwinana. City of Kwinana (2019) Local Biodiversity Study. Unpublished document prepared by City of Kwinana. City of Kwinana (2021a) Draft Local Planning Strategy - Part 1, Strategy 2021-2036. Unpublished document prepared by the City of Kwinana. City of Kwinana (2021b) Draft Local Planning Strategy – Part 2, Background and Analysis 2021-2036. Unpublished document prepared by the City of Kwinana. City of Kwinana (2021c) Strategic Community Plan 2021 – 2031. Unpublished document prepared by the City of Kwinana City of Kwinana (2021d) Climate Change Plan 2021- 2026. Unpublished document prepared by the City of Kwinana. City of Swan (2015) Local Biodiversity Strategy. Draft report prepared by the City of Swan. City of Wanneroo (2018) Local Biodiversity Plan 2018/19 – 2023/24. Unpublished Report prepared by the City of Wanneroo. Conservation International (2021) Biodiversity Hotspots. Targeted investment in nature's most important places. https://www.conservation.org/priorities/biodiversity-hotspots Accessed 9 November 2021 Commonwealth of Australia (2019) Australia's Strategy for Nature 2019 – 2030. https://www.australiasnaturehub.gov.au/sites/default/files/2020-11/australias-strategy-for-nature.pdf Accessed 11 November 2021 Commonwealth of Australia (2001) National Objectives and Targets for Biodiversity Conservation 2001-2005. Canberra. Davis, R.A. and Brooker, L. (2008) Ecological Linkages and Urban Fauna at Risk on the Swan Coastal Plain, Perth, Western Australia. Final Report. Unpublished report prepared for the Swan Catchment Council. Del Marco, A., Taylor, R., Clarke, K., Savage, J., Cullity, J., and Miles, C (2004) Local Government Biodiversity Planning Guidelines for the Perth Metropolitan Region. Western Australian Local Government Association and Perth Biodiversity Project. Department of Agriculture, Water and the Environment (DAWE) (2021) Protected Matters Search Tool. http://environment.gov.au/epbc/protected-matters-search-tool Department of the Environment, Water, Heritage and the Arts (DEWHA) (2009) Ecosystem Services: Key Concepts and Applications, Occasional Paper No.1, Department of the Environment, Water, Heritage and the Arts, Canberra. Department of Parks and Wildlife (DPaW) (2010) Jandakot Regional Park Management Plan 2010. Conservation Commission of Western Australia. Department of Biodiversity, Conservation and Attractions (DBCA) (2019) 2019 Statewide Vegetation Statistics formerly
CAR Reserve Analysis): Full Report. Remote Sensing and Spatial Analysis Program. Current as of March 2019. WA Department of Biodiversity, Conservation and Attractions, Perth. https://catalogue.data.wa.gov.au/dataset/dbca-statewide-vegetation-statistics Accessed 4 January 2021. Department of Biodiversity, Conservation and Attractions (DBCA) (2021a) Request for Threatened and Priority Flora information. Species and Communities Branch. Ref: 09-082FL. Department of Biodiversity, Conservation and Attractions (DBCA) (2021b) Request for Threatened and Priority Fauna information. Species and Communities Branch. Ref: FAUNA#6774. Department of Biodiversity, Conservation and Attractions (DBCA) (2021c) NatureMap https://naturemap.dbca.wa.gov.au/ Department of Biodiversity, Conservation and Attractions (DBCA) (2021d) Threatened and Priority Ecological Communities Database Search request. Ref:32-0721EC Department of Conservation and Land Management (CALM) (1997) Wetlands Conservation Policy for Western Australia. Review of Public Submissions 1997. Department of Environment and Conservation (DEC) (2006) A 100-year Biodiversity Conservation Strategy for Western Australia DRAFT Phase One: Blueprint to the Bicentenary in 2029. Department of Environment and Conservation (DEC) (2011) Sedgelands in Holocene dune swales, Interim Recovery Plan 2011-2016. Department of Environment and Conservation, Perth. Department of Environment and Energy (DEE) (2016) Approved Conservation Advice for the Banksia Woodlands of the Swan Coastal Plain Ecological Community. Environment Protection and Biodiversity Conservation Act 1999 Department of Water and Environmental Regulation (DWER) (2020) Perth Groundwater Map. https://maps.water.wa.gov.au/Groundwater/ Accessed 25 January 2022. Department of Planning, Lands and Heritage (DPLH) (2018) South Metropolitan Peel Sub-regional Planning Framework. March 2018. Western Australian Planning Commission. Perth. Department of Sustainability, Environment, Water, Population and Communities (DSEWPC) (2012) National Wildlife Corridors Plan: A framework for landscape-scale conservation. Commonwealth of Australia. Department of Primary Industries and Regional Development (DPIRD) (2020) Current Extent of Native vegetation – Western Australia (DPIRD-005) Publicly Available Shapefile. https://catalogue.data.wa.gov.au/dataset/native-vegetation-extent Environmental Protection Authority (EPA) (2008) Guidance Statement No. 33: Environmental Guidance for Planning and Development. Environmental Protection Authority (EPA) (2015) Perth and Peel @ 3.5 Million: Environmental Impacts, Risk and Remedies. Interim strategic advice of the Environmental Protection Authority to the Minister for Environment under section 16€ of the Environmental Protection Act 1986. Office of the Environmental Protection Authority. Perth. Gibson, N., Keighery, B., Keighery, G., Burbidge, A. and Lyons, M. (1994) A Floristic Survey of the southern Swan Coastal Plain. Unpublished report prepared by the Western Australian Department of Conservation and Land Management and the Western Australian Conservation Council for the Heritage Commission. Gioia, P. (2010) South Coast NRM Region – flora summary. Department of Environment and Conservation. Western Australia Perth. Government of Western Australia (2000a) Bush Forever, Volume 1: Policies, Principles and Processes. Department of Environmental Protection, Perth, Western Australia. Government of Western Australia (2000b) Bush Forever, Volume 2: Directory of Bush Forever sites. Department of Environmental Protection, Perth, Western Australia. Government of Western Australia (2010) State Planning Policy 2.8: Bushland Policy for the Perth Metropolitan Region. State Planning Policy prepared under section 26 of the Planning and Development Act, 2005. Government of Western Australia (2011) WA Environmental Offset Policy. September 2011. https://www.epa.wa.gov.au/sites/default/files/Policies_and_Guidance/WAEnvOffsetsPolicy-270911.pdf Accessed 11 November 2021 Government of Western Australia (2014) WA Environmental Offsets Guidelines. August 2014. https://www.epa.wa.gov.au/sites/default/files/Policies_and_Guidance/WA%20Environmental%20 Offsets%20Guideline%20August%202014.pdf Accessed 11 November 2021. Government of Western Australia (2019) 2018 State Vegetation Statistics incorporating the CAR Reserve Analysis (Full Report). Current as of March 2019. WA Department of Biodiversity, Conservation and Attractions, Perth. Heddle, E. M., Loneragan, O. W., and Havel, J. J (1980) Atlas of Natural Resources. Western Australia Department of Conservation and Environment. Hopper, S. D., and P. Gioia (2004) The southwest Australian floristic region: evolution and conservation of a global hotspot of biodiversity. Annual Review of Ecology, Evolution, and Systematics 35:623-650. International Union for Conservation of Nature and Natural Resources (IUCN 1980) World Conservation Strategy. Living Resource Conservation for Sustainable Development. Ironbark Environmental (2007) Draft Biodiversity Strategy. Unpublished document prepared for the City of Kwinana. Ironbark Environmental (2013) Natural Area Conservation in the City of Kwinana Paper. Unpublished report prepared for the City of Kwinana. Jackson WJ, Argent RM, Bax NJ, Clark GF, Coleman S, Cresswell ID, Emmerson KM, Evans K, Hibberd MF, Johnston EL, Keywood MD, Klekociuk A, Mackay R, Metcalfe D, Murphy H, Rankin A, Smith DC & Wienecke B (2017). Australia state of the environment 2016: overview, independent report to the Australian Government Minister for the Environment and Energy, Australian Government Department of the Environment and Energy, Canberra. https://soe.environment.gov.au/theme/overview/topic/land-use-change-and-habitat-fragmentation-and-degradation-threaten-ecosystems Keighery, B., Keighery, G., Longman, V.M., and Clarke, K.A. (2012) Weed and native flora quadrat data compiled between 1990 – 1996 for the Swan Coastal Plain. Data compiled for the Departments of Environmental Protection and Conservation and Land Management. Lindenmayer, D. and Burgman, M. (2005) Practical Conservation Biology. CSIRO Publishing. Collingwood, Australia. Lovett, S., Price, P. and Cork, S. (2004) Riparian ecosystem services. Fact Sheet 12. Land and Water Australia, Canberra. Miles, C. (2001) NSW Murray Catchment Biodiversity Action Plan. Nature Conservation Working Group Inc. Albury, New South Wales. Molloy, S., Wood, J., Hall, S., Wallrodt, S. and Whisson, G. (2009) South West Regional Ecological Linkages Technical Report, Western Australian Local Government Association and Department of Environment and Conservation, Perth. Nam Natura Consulting (2020) 2020 Kalamunda Local Biodiversity Strategy. City of Kalamunda Biodiversity Conservation Action Plan 2020 – 2030. Technical Report. October 2020. Unpublished report prepared for the City of Kalamunda. National Biodiversity Strategy Review Task Group (2009) Australia's Biodiversity Conservation Strategy 2010-2020. Consultant Draft. Australian Government, Department of the Environment, Water, Commonwealth of Australia. Perth Biodiversity Project (PBP)(2013) Central Perth Regional parklands concept. Vegetation connectivity analysis. Capital City Planning Framework. Supporting document. February 2013. Shire of Kalamunda (2008) Local Biodiversity Strategy. Shire of Kalamunda. South West Group (2014) Towards Establishing A Green Network. Western Australia Local Government Association (WALGA). Smith, P. and Sivertsen, D. (2001) Draft background paper Part B: Setting goals and targets. Centre for Natural Resources, Department of Land and Water Conservation, Parramatta (unpublished draft). Threatened Species Scientific Committee (TSSC) (Department of the Environment and Energy (DEE)) (2016) Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) (s 266B) Approved Conservation Advice (incorporating listing advice) for the Banksia Woodlands of the Swan Coastal Plain ecological community. Urban Bushland Council (2011) Perth's Banksia Woodlands, Precious and Under Threat. Proceedings of a symposium on the ecology of these ancient woodlands and their need for protection from neglect and destruction, 25 March 2011 Western Australian Planning Commission(WAPC) 1984/2014 Metropolitan Region Scheme. June 2014 # APPENDIX A – GEOMORPHIC WETLANDS WITHIN THE CITY OF KWINANA | UFI | Wetland Name | Wetland Classification | Management Category | |-------|---------------------------|------------------------|--------------------------| | 6382 | Unknown | Sumpland | Conservation Category | | 6384 | Unknown | Sumpland | Conservation Category | | 6386 | Unknown | Sumpland | Conservation Category | | 6389 | Unknown | Sumpland | Conservation Category | | 6391 | Unknown | Sumpland | Conservation Category | | 6392 | Unknown | Sumpland | Conservation Category | | 6537 | Spectacles South | Sumpland | Conservation Category | | 6539 | Spectacles North | Sumpland | Conservation Category | | 6614 | Unknown | Sumpland | Conservation Category | | 6615 | Unknown | Sumpland | Conservation Category | | 6616 | Unknown | Sumpland | Conservation Category | | 6666 | Sandy Lake | Sumpland | Conservation Category | | 6679 | Unknown | Dampland | Conservation Category | | 6721 | Sandy Lake | Sumpland | Conservation Category | | 6725 | Mandogalup Swamp
North | Sumpland | Conservation Category | | 6795 | Unknown | Dampland | Conservation Category | | 6799 | Unknown | Dampland | Conservation Category | | 6800 | Unknown | Dampland | Conservation Category | | 6801 | Unknown | Dampland | Conservation Category | | 6806 | Unknown | Dampland | Conservation Category | | 6808 | Unknown | Dampland | Conservation Category | | 6811 | Unknown | Dampland | Conservation Category | | 6812 | Unknown | Dampland | Conservation Category | | 6900 | Unknown | Dampland | Conservation Category | | 6903 | Unknown | Sumpland | Conservation Category | | 12918 | Unknown | Sumpland | Conservation
Category | | 12980 | Unknown | Sumpland | Conservation
Category | | 12981 | Mandogalup Swamp
South | Dampland | Conservation
Category | 96 | UFI | Wetland Name | Wetland Classification | Management Category | |-------|-------------------------------|------------------------|--------------------------| | 15585 | Mandogalup Swamp
Mid South | Sumpland | Conservation
Category | | 15866 | Bollard Bulrush
Swamp | Sumpland | Conservation
Category | | 6375 | Unknown | Sumpland | Resource
Enhancement | | 6376 | Unknown | Sumpland | Resource
Enhancement | | 6379 | Unknown | Dampland | Resource
Enhancement | | 6380 | Unknown | Dampland | Resource
Enhancement | | 6387 | Unknown | Sumpland | Resource
Enhancement | | 6388 | Unknown | Sumpland | Resource
Enhancement | | 6390 | Unknown | Sumpland | Resource
Enhancement | | 6401 | Unknown | Sumpland | Resource
Enhancement | | 6610 | Wattleup Lake | Lake | Resource
Enhancement | | 6613 | Unknown | Sumpland | Resource
Enhancement | | 6664 | Mandogalup Swamp
Mid North | Sumpland | Resource
Enhancement | | 6667 | Unknown | Dampland | Resource
Enhancement | | 6670 | Unknown | Dampland | Resource
Enhancement | | 6672 | Unknown | Sumpland | Resource
Enhancement | | 6690 | Unknown | Dampland | Resource
Enhancement | | 6719 | Mandogalup Swamp
North | Sumpland | Resource
Enhancement | | 6724 | Mandogalup Swamp
North | Sumpland | Resource
Enhancement | | 6726 | Mandogalup Swamp
North | Sumpland | Resource
Enhancement | | UFI | Wetland Name | Wetland Classification | Management Category | |-------|--------------|------------------------|-------------------------| | 6729 | Unknown | Dampland | Resource
Enhancement | | 6794 | Unknown | Dampland | Resource
Enhancement | | 6796 | Unknown | Dampland | Resource
Enhancement | | 6802 | Unknown | Dampland | Resource
Enhancement | | 6807 | Unknown | Dampland | Resource
Enhancement | | 6814 | Unknown | Dampland | Resource
Enhancement | | 6815 | Unknown | Dampland | Resource
Enhancement | | 6887 | Unknown | Dampland | Resource
Enhancement | | 6889 | Unknown | Dampland | Resource
Enhancement | | 6891 | Unknown | Dampland | Resource
Enhancement | | 6892 | Unknown | Dampland | Resource
Enhancement | | 6895 | Unknown | Dampland | Resource
Enhancement | | 6899 | Unknown | Dampland | Resource
Enhancement | | 12919 | Unknown | Dampland | Resource
Enhancement | | 13689 | Unknown | Dampland | Resource
Enhancement | | 13693 | Unknown | Dampland | Resource
Enhancement | | 13750 | Unknown | Sumpland | Resource
Enhancement | | 13967 | Unknown | Dampland | Resource
Enhancement | | 13968 | Unknown | Dampland | Resource
Enhancement | | 13969 | Unknown | Dampland | Resource
Enhancement | | UFI | Wetland Name | Wetland Classification | Management Category | |-------|--------------|------------------------|-------------------------| | 14079 | Unknown | Sumpland | Resource
Enhancement | | 14664 | Unknown | Palusplain | Resource
Enhancement | | 14666 | Unknown | Palusplain | Resource
Enhancement | | 14732 | Unknown | Dampland | Resource
Enhancement | | 15325 | Unknown | Dampland | Resource
Enhancement | | 15327 | Unknown | Dampland | Resource
Enhancement | | 15328 | Unknown | Dampland | Resource
Enhancement | | 15329 | Unknown | Dampland | Resource
Enhancement | | 15330 | Unknown | Dampland | Resource
Enhancement | | 15331 | Unknown | Dampland | Resource
Enhancement | | 15332 | Unknown | Not Assessed | Resource
Enhancement | | 15334 | Unknown | Not Assessed | Resource
Enhancement | | 15335 | Unknown | Not Assessed | Resource
Enhancement | | 15343 | Unknown | Not Assessed | Resource
Enhancement | | 15344 | Unknown | Not Assessed | Resource
Enhancement | | 15347 | Unknown | Not Assessed | Resource
Enhancement | | 15348 | Unknown | Dampland | Resource
Enhancement | | 15400 | Unknown | Sumpland | Resource
Enhancement | | 15800 | Unknown | Sumpland | Resource
Enhancement | | 15801 | Unknown | Sumpland | Resource
Enhancement | | UFI | Wetland Name | Wetland Classification | Management Category | |-------|---------------------------|------------------------|-------------------------| | 15867 | Bollard Bulrush
Swamp | Sumpland | Resource
Enhancement | | 15935 | Unknown | Dampland | Resource
Enhancement | | 15936 | Unknown | Dampland | Resource
Enhancement | | 6381 | Unknown | Dampland | Multiple Use | | 6530 | Mandogalup Swamp
South | Dampland | Multiple Use | | 6531 | Unknown | Dampland | Multiple Use | | 6538 | Unknown | Dampland | Multiple Use | | 6668 | Sandy Lake | Sumpland | Multiple Use | | 6669 | Sandy Lake | Sumpland | Multiple Use | | 6716 | Mandogalup Swamp
North | Sumpland | Multiple Use | | 6793 | Unknown | Sumpland | Multiple Use | | 6803 | Unknown | Dampland | Multiple Use | | 6810 | Unknown | Dampland | Multiple Use | | 6901 | Unknown | Sumpland | Multiple Use | | 6926 | Unknown | Dampland | Multiple Use | | 12921 | Unknown | Dampland | Multiple Use | | 13327 | Bollard Bulrush
Swamp | Sumpland | Multiple Use | | 13727 | Unknown | Dampland | Multiple Use | | 13728 | Unknown | Dampland | Multiple Use | | 13731 | Unknown | Dampland | Multiple Use | | 13732 | Unknown | Dampland | Multiple Use | | 13737 | Unknown | Sumpland | Multiple Use | | 13738 | Unknown | Sumpland | Multiple Use | | 13740 | Unknown | Sumpland | Multiple Use | | 13741 | Unknown | Sumpland | Multiple Use | | 13753 | Unknown | Dampland | Multiple Use | | 13958 | Unknown | Sumpland | Multiple Use | | 13962 | Unknown | Sumpland | Multiple Use | | 13966 | Unknown | Sumpland | Multiple Use | | UFI | Wetland Name | Wetland Classification | Management Category | |-------|-------------------------------|------------------------|---------------------| | 14063 | Unknown | Sumpland | Multiple Use | | 14163 | Unknown | Dampland | Multiple Use | | 14662 | Mandogalup Swamp
North | Sumpland | Multiple Use | | 15336 | Unknown | Dampland | Multiple Use | | 15337 | Unknown | Dampland | Multiple Use | | 15338 | Unknown | Dampland | Multiple Use | | 15340 | Unknown | Dampland | Multiple Use | | 15342 | Unknown | Sumpland | Multiple Use | | 15345 | Unknown | Not Assessed | Multiple Use | | 15346 | Unknown | Not Assessed | Multiple Use | | 15349 | Unknown | Sumpland | Multiple Use | | 15350 | Unknown | Dampland | Multiple Use | | 15396 | Unknown | Sumpland | Multiple Use | | 15398 | Unknown | Sumpland | Multiple Use | | 15578 | Unknown | Dampland | Multiple Use | | 15582 | Unknown | Not Assessed | Multiple Use | | 15583 | Mandogalup Swamp
Mid South | Sumpland | Multiple Use | | 15590 | Unknown | Dampland | Multiple Use | | 15785 | Unknown | Palusplain | Multiple Use | | 15798 | Unknown | Sumpland | Multiple Use | | 15799 | Unknown | Sumpland | Multiple Use | | 15937 | Unknown | Dampland | Multiple Use | | 15938 | Unknown | Dampland | Multiple Use | | 13091 | Not Applicable | Dryland | Not Applicable | | 13941 | Long Swamp* | No Longer a Wetland | Not Applicable | | 14076 | Unknown | No Longer a Wetland | Not Applicable | | 14419 | Not Applicable | Dryland | Not Applicable | | 15395 | Unknown | No Longer a Wetland | Not Applicable | | 15862 | Unknown | No Longer a Wetland | Not Applicable | | 15905 | Unknown | No Longer a Wetland | Not Applicable | ^{*} UFI 15391 – Long Swamp is the CCW # APPENDIX B – PRIORITISATION OF HIGH CONSERVATION VALUE LNAS | | Area (ha) | 1.56 | 0.11 | 0 | 0.69 | 0.09 | 0.16 | 0.94 | 1.06 | 0.38 | 1.15 | 0.02 | 44.29 | 0 | 0 | 0.01 | 0 | |----------|-----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | 2 | | | P5_1 | m | m | 3 | 2 | m | m | m | m | m | m | m | m | m | m | m | 2 | | | P4_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 2 | 7 | 7 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | | | P3_8 | ← | ← | ~ | - | — | — | ~ | ~ | — | — | — | - | — | — | — | ← | | ع | P3_7b | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Criteria | P3_7a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 2 | 2 | 2 | 7 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | c | m | 3 | m | c | ~ | m | n | m | m | m | m | m | m | c | m | | | P1_2a | - | ← | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | - | - | — | ← | | | Locality | CASUARINA | | | CASUARINA | CASUARINA | | | CASUARINA | CASUARINA | | | Туре | 귙 | | | Ч | DR | R | 占 | DR | DR. | RD . | | 8
 | | DR. | DR | | F | Road Name | 9901 | | | 9901 | NICOLAS | NICOLAS | 9901 | NICOLAS | NICOLAS | MORTIMER | | MORTIMER | | | NICOLAS | NICOLAS | | l | .ot/ Rd No. | 24 | | | 28 | 12 | 32 | 2 | 9/ | 24 | 135 | | 165 | | | 122 | 168 | | E
No | asting (mE)
orthing (mN) | 392443mE
6431463mN | 392443mE
6431203mN | 392524mE
6431345mN | 392566mE
6431601mN | 392607mE
6430795mN | 392613mE
6430999mN | 392614mE
6431376mN | 392631mE
6431200mN | 392635mE
6430905mN | 392638mE
6430647mN | 392976mE
6430630mN | 393027mE
6431705mN | 393030mE
6431552mN | 393030mE
6431532mN | 393030mE
6431529mN | 393032mE
6431346mN | | A | rea (ha) | 0.01 | 9.22 | 1.56 | 1.37 | 1.12 | 0.78 | 0.48 | 1.17 | 1.27 | 1.26 | 1.21 | 0.01 | 1.48 | 1.77 | 0.7 | 0.04 | 0.65 | |----------|------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 28 | 26 | 26 | 26 | 26 | 26 | 26 | 24 | 23 | 23 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | 7 | 7 | 2 | | | P5_1 | m | m | m | 3 | m | 3 | m | 0 | 0 | 0 | 0 | 0 | m | m | m | ~ | m | | | P4_1 | 0 | - | - | - | - | ~ | ~ | — | - | - | 0 | 0 | - | - | - | - | | | | P3_9c | 2 | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | 7 | 7 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 7 | 7 | | | P3_8 | - | 0 | 0 | 0 | 0 | 0 | 0 | ~ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | es . | P3_7b | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 4 | 4 | 4 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 8 | ~ | cc | c | æ | c | m | m | m | m | m | 33 | m | m | ~ | 3 | 3 | | | P1_2a | _ | - | - | ~ | _ | _ | - | - | - | - | - | _ | - | _ | - | - | _ | | L | .ocality | | | WELLARD | | WELLARD | WELLARD | WELLARD | WELLARD | WELLARD | CASUARINA | WELLARD | | WELLARD | WELLARD | WELLARD | WELLARD | WELLARD | | | Туре | | | 8 | | 8 | RD | 8 | Ы | RD | DR | RD | | RD | RD | b | 8 | RD | | Ro | ad Name | | | BRADDOCK | | BRADDOCK | BRADDOCK | BRADDOCK | SHIPSEY | BARKER | LAVERY | BARKER | | BARKER | BARKER | BALKA | BRADDOCK | BRADDOCK | | Lot | t/Rd No. | | | 173 | | 159 | 151 | 149 | — | 106 | 100 | 22 | | 129 | 135 | 9 | 48 | 52 | | Eas
N | ting (mE)
orthing
(mN) | 393127mE
6431645mN | 392686mE
6428582mN | 392926mE
6428711mN | 393005mE
6428677mN | 393084mE
6428646mN | 393164mE
6428616mN | 393244mE
6428585mN | 393777mE
6428820mN | 394032mE
6429726mN | 394719mE
6431478mN | 393769mE
6430420mN | 393825mE
6430507mN | 393855mE
6429573mN | 393965mE
6429362mN | 394038mE
6429619mN | 394053mE
6429118mN | 394065mE
6429354mN | | Ar | ea (ha) | 1.36 | 0.43 | 1.27 | 0.63 | 0.65 | 0.27 | 0.45 | 0.12 | 0 | 0 | 7.22 | 15.87 | 4.34 | 0.01 | 0.04 | 0.31 | 3.57 | |--------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 20 | 20 | 20 | 20 | 19 | 19 | 19 | 19 | 19 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | _ | - | _ | _ | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 7 | 7 | 7 | 2 | 2 | 7 | 2 | 2 | 2 | 2 | 2 | 2 | 7 | 7 | 7 | 2 | 2 | | | P5_1 | n | c | m | c | m | m | m | 2 | 0 | 0 | 0 | 0 | 0 | m | m | m | m | | | P4_1 | - | — | ~ | — | — | — | ~ | — | — | _ | _ | _ | — | — | — | — | - | | | P3_9c | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | а | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | - | - | - | | | P3_3b | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 2 | 3 | 33 | 3 | m | 3 | 3 | co | 0 | 0 | 0 | 0 | 0 | m | 33 | 3 | m | | | P1_2a | _ | ~ | ~ | _ | - | ~ | ~ | ~ | 0 | 0 | 0 | 0 | 0 | - | ~ | ~ | - | | L | ocality | WELLARD | PARMELIA | PARMELIA | PARMELIA | WELLARD | | | | BERTRAM | | | Туре | RD | b | RD | RD | RD | RD | RD | RD | | RISE | GDNS | RD | PDE | | | | RD | | Roa | nd Name | BARKER | BALKA | BANKSIA | BANKSIA | BRADDOCK | BRADDOCK | BANKSIA | BANKSIA | | BLACKBOY | TIMBERTOP | BERTRAM | BRENTFORD | | | | JOHNSON | | Lot | / Rd No. | 121 | 10 | 149 | 147 | 42 | 32 | 145 | 133 | | 22 | | | 22 | | | | 99 | | Eas:
Nort | ting (mE)
hing (mN) | 394066mE
6429602mN | 394147mE
6429646mN | 394160mE
6429563mN | 394207mE
6429347mN | 394221mE
6429268mN | 394318mE
6429254mN | 394327mE
6429326mN | 394394mE
6429240mN | 389348mE
6430423mN | 389378mE
6430395mN | 389434mE
6430483mN | 389992mE
6431027mN | 388997mE
6429255mN | 391428mE
6432536mN | 391521mE
6432081mN | 391527mE
6432146mN | 391695mE
6432519mN | | | Area | a (ha) | 89.0 | 1.34 | 7.5 | 0.01 | 0.27 | 1.79 | 3.27 | 1.79 | 3.27 | 0.36 | 3.65 | 0.43 | 0 | 0.35 | 29.6 | 0 | 0.01 | 7.9 | |---|--------------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------|--------|------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Sc | ore | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 18 | | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | P5_1b | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | P5_1 | m | m | m | 0 | 0 | \sim | 0 | m | 0 | m | n | m | m | n | m | n | n | 0 | | | | P4_1 | — | - | ~ | 0 | 0 | 0 | 0 | 0 | 0 | ~ | 0 | ~ | 0 | 0 | 0 | 0 | 0 | 0 | | | | P3_9c | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 7 | 7 | 0 | | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | P3_9a | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 7 | 7 | 2 | | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | <u></u> | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | P3_5 | 0 | 0 | 0 | 4 | 4 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | P3_4 | ~ | ~ | — | — | — | 0 | - | 0 | — | ~ | 0 | — | 0 | 0 | 0 | 0 | 0 | - | | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | | P_3 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 7 | 0 | 0 | 7 | 0 | 7 | 2 | 2 | 2 | 2 | 0 | | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | P1_2b | 2 | c | m | 2 | n | c | m | 3 | 33 | 3 | c | 3 | 3 | 33 | m | 2 | 2 | 0 | | | | P1_2a | _ | - | - | _ | — | _ | - | _ | - | — | _ | - | ~ | _ | _ |
- | - | 0 | | | Loc | cality | | BERTRAM | CASUARINA | ANKETELL | ANKETELL | | | WELLARD | | ANKETELL | WELLARD | ANKETELL | | | | | | HOPE | | | Ty | уре | | FWY | RD | RD | RD | | | RD | | RD | RD | RD | | | | | | RD | | F | Road | l Name | | KWINANA | ORTON | TREEBY | TREEBY | | | MORTIMER | | THOMAS | MORTIMER | THOMAS | | | | | | ANKETELL | | l | Lot/ | Rd No. | | | | 74 | 74 | | | 110 | | 793 | 136 | 811 | | | | | | | | Е | astir
Nor
(n | ng (mE)
thing
nN) | 391755mE
6432278mN | 391788mE
6432286mN | 391875mE
6432284mN | 392050mE
6434968mN | 392055mE
64349587mN | | | 392296mE
6430414mN | 392355mE
6435054mN | 392378mE
6433821mN | 392398mE
6430520mN | 392424mE
6433873mN | 392663mE
6430078mN | 392664mE
6430073mN | 392686mE
6430378mN | 392843mE
6430078mN | 392981mE
6430265mN | 388535mE
6435549mN | | Ar | ea (ha) | 0.55 | 2.74 | 0.18 | 0 | 0 | 20.88 | 0.35 | 0 | 1.76 | 0.01 | 0.71 | 0 | 0 | 0 | 0 | 0 | 0.48 | |--------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 8 | 8 | 8 | 18 | 18 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 18 | 8 | 8 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | P5_1 | 0 | m | m | m | 0 | 0 | m | 3 | 33 | m | m | 33 | 2 | m | m | m | М | | | P4_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | — | 0 | — | — | 0 | 0 | — | - | | | P3_9c | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 2 | 7 | 2 | 2 | | | P3_8 | - | 0 | 0 | 0 | — | — | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | <u>.e</u> | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | - | — | — | — | — | — | — | - | - | 0 | - | 0 | 0 | - | - | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 2 | 0 | 0 | 0 | 2 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | m | 33 | m | 33 | 33 | 33 | c | 33 | 3 | m | m | 33 | 3 | 3 | 33 | 3 | m | | | P1_2a | | | - | ~ | ~ | ~ | ~ | ~ | _ | ~ | ~ | - | _ | - | _ | — | - | | Lo | ocality | MANDOGA-
LUP | MANDOGA-
LUP | WANDI | | | | WANDI | WANDI | WANDI | | ANKETELL | | | | | | | | | Туре | 8 | 8 | CRES | | | | RWY | CRES | | | 8 | | | | | | | | Roa | ad Name | ROWLEY | HOFFMAN | MORNINGTON | | | | KWINANA | MORNINGTON | | | THOMAS | | | | | | | | Lot | / Rd No. | 99 | | | | | | | | | | 819 | | | | | | | | East
Nort | ting (mE)
hing (mN) | 391977mE
6438847mN | 392151mE
6437309mN | 392193mE
6436792mN | 392200mE
6437108mN | 392212mE
6438123mN | 392215mE
6438530mN | 392256mE
6437366mN | 392274mE
6436886mN | 392381mE
6436700mN | 392557mE
6428608mN | 392561mE
6433932mN | 392571mE
6428603mN | 392623mE
6428587mN | 392685mE
6436972mN | 392686mE
6436973mN | 392863mE
6428502mN | 392876mE
6428505mN | | Aı | rea (ha) | 0 | 2.82 | 0.42 | 0.83 | 1.12 | 1.12 | 1.35 | 5.11 | 0.84 | 1.45 | 0 | 0.49 | 0.83 | 0.49 | 1.69 | 1.16 | 1.07 | |--------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 8 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 7 | 7 | 7 | 2 | 2 | 2 | 7 | 7 | 7 | 2 | 7 | 2 | 2 | 7 | 7 | 7 | 2 | | | P5_1 | m | m | m | m | m | m | m | m | n | 3 | 3 | c | c | m | m | m | 2 | | | P4_1 | — | ~ | — | ~ | ~ | - | _ | - | ~ | - | _ | - | ~ | ~ | ~ | ~ | — | | | P3_9c | 2 | 7 | 7 | 2 | 2 | 2 | 2 | 7 | 7 | 2 | 2 | 2 | 2 | 7 | 7 | 7 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 2 | 7 | 7 | 7 | 7 | 2 | 7 | 7 | 2 | 2 | 2 | 7 | 2 | 2 | 7 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | . <u>i</u> a | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | m | æ | 3 | c | 3 | 3 | c | c | m | cc | 33 | cc | m | ω | Ω | ω | 3 | | | P1_2a | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | — | _ | _ | _ | _ | _ | | L | ocality | WELLARD | | Туре | SD . | 8 | 8 | 김 | SD . | 8 | DR | 8 | DR | SD . | | RD | PWY | 8 | PWY | 8 | RD | | Ro | ad Name | BRADDOCK | BRADDOCK | BRADDOCK | NELLA | BRADDOCK | BRADDOCK | ARUNDEL | BRADDOCK | ARUNDEL | BRADDOCK | | BARKER | ALEXANDER | BARKER | ALEXANDER | BARKER | BARKER | | Lot | t/ Rd No. | 173 | 178 | 172 | 38 | 128 | 120 | 64 | 108 | 78 | 108 | | 179 | 32 | 179 | 22 | 167 | 124 | | Eas
Nort | ting (mE)
hing (mN) | 392876mE
6428505mN | 392905mE
6429022mN | 393002mE
6428941mN | 393029mE
6429080mN | 393238mE
6428918mN | 393346mE
6429039mN | 393406mE
6429446mN | 393430mE
6429231mN | 393464mE
6429314mN | 393494mE
6429220mN | 393544mE
6429298mN | 393718mE
6429243mN | 393661mE
6429706mN | 393718mE
6429243mN | 393727mE
6429598mN | 393759mE
6429431mN | 393778mE
6429681mN | | A | rea (ha) | 0 | 0.4 | 0 | 0.04 | 0.51 | 0 | 0.17 | 0.29 | 0.12 | 0 | 0 | 0.36 | 0.87 | 1.08 | 0.01 | 2.9 | 22.71 | |-----------|--------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 18 | 18 | 18 | 8 | 8 | 8 | 8 | 18 | 8 | 8 | 8 | 8 | 18 | 18 | 18 | 8 | 17 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | — | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 7 | 2 | 2 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | 7 | 2 | 7 | 7 | 7 | 2 | 2 | | | P5_1 | m | m | c | m | m | m | m | m | m | co | 0 | 0 | m | m | m | m | m | | | P4_1 | _ | _ | _ | _ | _ | - | - | - | - | - | 0 | 0 | _ | _ | _ | 0 | ~ | | | P3_9c | 2 | 2 | 2 | 2 | 7 | 2 | 2 | 2 | 2 | 2 | 7 | 2 | 2 | 2 | 2 | 2 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | | Criteria | P3_7b | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | | Ë | P3_7a
P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_0
P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 0 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 3 | 3 | 3 | 3 | 3 | m | 3 | c | c | 33 | 3 | c | 3 | n | n | co | m | | | P1_2a | ~ | ~ | _ | ~ | ~ | - | ~ | _ | _ | - | - | - | - | ~ | ~ | - | — | | | Locality | WELLARD | WELLARD | | WELLARD CASUARINA | CASUARINA | CASUARINA | CASUARINA | CASUARINA | CASUARINA | LEDA | | | Туре | RD | RD | | RD ರ | DR | DR | DR | DR | RD | | Ro | oad Name | BRADDOCK | BARKER | | BARKER | BRADDOCK | BARKER | BARKER | BRADDOCK | BRADDOCK | BRADDOCK |
BORN | MELALEUCA | LAVERY | LAVERY | LAVERY | GOODMAN | WELLARD | | Lo | t/Rd No. | 54 | 171 | | 129 | 54 | 135 | 121 | 48 | 48 | 42 | 92 | 11 | 101 | 105 | 123 | 19 | | | Ea
Nor | sting (mE)
thing (mN) | 393792mE
6429208mN | 393825mE
6429294mN | 393901mE
6429609mN | 393948mE
6429583mN | 393956mE
6429352mN | 393956mE
6429352mN | 393987mE
6429579mN | 394052mE
6429302mN | 394109mE
6429239mN | 394111mE
6429244mN | 394235mE
6431571mN | 394258mE
6431571mN | 394712mE
6431652mN | 394888mE
6431735mN | 394889mE
6431769mN | 394981mE
6430977mN | 385794mE
6430029mN | | H | Area (ha) | 12.76 | 0 | 0 | 0.33 | 6.22 | 0 | 69.0 | 0 | 0.28 | 0.62 | 0 | 0.88 | 0.12 | 0.53 | 0.4 | 1.67 | 0.29 | |-----------|---------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | | | P6_2 | ~ | - | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 7 | 2 | 2 | 7 | 2 | 2 | 7 | 7 | 7 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | P5_1 | m | 0 | 0 | 0 | 0 | 3 | 3 | 3 | 3 | 3 | c | m | 3 | 3 | c | 33 | m | | | P4_1 | _ | _ | _ | _ | _ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 0 2 | 0 2 | 0 2 | 0 2 | 2 | 2 | 2 | 2 | 2 | 2 | 7 | 2 | 2 | 0 2 | 0 2 | 0 2 | 0 2 | | | P3_9b
P3_9a | 5 (| 7 | 5 (| 7 | 2 0 | 2 0 | 2 0 | 2 0 | 2 0 | 2 0 | 2 0 | 2 0 | 2 0 | 5 (| 7 | 7 | 5 (| | | P3_8 | 0 | 0 | 0 | 0 | — | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | - | - | - | ~ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 0 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 0 | 0 | 0 0 | 0 0 | 0 0 | 0 | 0 0 | 0 | 0 | 0 0 | 0 0 | 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | | | P1_2c
P1_2b | m | ω | m | 8 | 8 | 8 | 3 | 8 | ω | 3 | 3 | ω | 9 | 8 | 3 | 8 | | | | P1_2a | — | - | - | _ | _ | _ | _ | _ | _ | _ | — | _ | _ | - | — | — | — | | | Locality | | | | | | | WELLARD | WELLARD | WELLARD | WELLARD | | WELLARD | WELLARD | WELLARD | WELLARD | WELLARD | WELLARD | | | Туре | | | | | | | 8 | 8 | 8 | 8 | | DR | DR | DR | DR | RD | DR | | Ro | oad Name | | | | | | | WOOLCOOT | WOOLCOOT | WOOLCOOT | WOOLCOOT | | ARUNDEL | ARUNDEL | ARUNDEL | ARUNDEL | WOOLCOOT | ARUNDEL | | Lo | ot/Rd No. | | | | | | | 145 | 145 | 129 | 93 | | 26 | 22 | 28 | | <i>L</i> 9 | | | Ea
Noi | sting (mE)
rthing (mN) | 386044mE
6430900mN | 390510mE
6436972mN | 390510mE
6436972mN | 390704mE
6436789mN | 391374mE
6438539mN | 392594mE
6429571mN | 392604mE
429541mN | 392675mE
6429437mN | 392764mE
6429667mN | 392841mE
6429734mN | 392859mE
6429675mN | 392861mE
6429483mN | 392875mE
6429571mN | 392896mE
6429465mN | 392990mE
6429675mN | 393101mE
6429807mN | 393142mE
6429806mN | | | P6_2 P6_1 P5_1b P5_1 P4_1 P3_9c P3_9b P3_9a P3_8 | 0 2 0 2 0 3 2 0 0 17 0.44 | 0 2 0 2 0 3 2 0 0 17 0.95 | 0 2 0 2 0 3 2 0 0 17 0.73 | 0 2 0 2 0 3 2 0 0 17 1.05 | 0 2 0 2 0 3 2 0 0 17 0.96 | 0 2 0 2 0 3 2 0 0 17 1.18 | 0 2 0 2 0 3 2 0 0 17 0 | 0 2 0 2 0 3 2 0 0 17 0.81 | 0 2 0 2 0 3 2 0 0 17 0.98 | 0 2 0 2 0 3 2 0 0 17 1.2 | 0 2 0 2 0 3 2 0 0 17 1.02 | 0 2 0 2 0 3 2 0 0 17 0.27 | 0 2 0 2 0 3 2 0 0 17 0.01 | 0 2 0 2 0 3 2 0 0 17 0.66 | 0 2 0 3 2 0 0 17 0.67 | 0 2 0 2 0 3 2 0 0 17 0 | |----------|--|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--------------------------|---------------------------|---------------------------|--------------------------|---------------------------|---------------------------|---------------------------|---------------------------|-----------------------|------------------------| | Criteria | P3_7b P3_7a P3_6 P3_5 P3_4 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | | | P3_3b P3_3a P_3 P1_2d P1_2c | 0 0 0 4 0 | 0 0 0 4 0 | 0 0 0 4 0 | 0 0 0 4 0 | 0 0 0 4 0 | 0 0 0 4 0 | 0 0 0 4 0 | 0 0 0 4 0 | 0 0 0 4 0 | 0 0 0 4 0 | 0 0 0 4 0 | 0 0 0 4 0 | 0 0 0 4 0 | 0 0 0 4 0 | 0 0 0 4 0 | 0 0 0 4 0 | | L | P1_2b P1_2a ocality | 1 8 | WELLARD 1 3 CASUARINA 1 3 | WELLARD 1 3 | CASUARINA 1 3 | WELLARD 1 3 | WELLARD 1 3 | WELLARD 1 3 | | | Type
ad Name | | ARUNDEL DR | CHANDLER CL | BRADDOCK RD | ARUNDEL DR | CHANDLER CL | CHANDLER CL | CHANDLER CL | ARUNDEL DR | ARUNDEL DR | NICOLAS DR | ALEXANDER PWY | BORN RD | ALEXANDER PWY | CHANDLER CL | CHANDLER CL | | East | / Rd No.
ting (mE)
hing (mN) | 393144mE
6429623mN | 393181mE
6429764mN | 393199mE 27
6429830mN | 393234mE
6429281mN | 393248mE
6429594mN | 393307mE 23
6429872mN | 393315mE 21
6429907mN | 393327mE
6429815mN | 393330mE
6429439mN 52 | 393353mE
6429680mN | 393422mE
6431741mN | 393449mE
6429739mN | 393463mE
6431656mN | 393477mE
6429558mN | 393501mE
6429816mN | 393505mE 7 | | Aı | rea (ha) | - | 1.06 | 0.57 | 8.0 | 0.73 | 0.03 | 1.84 | 0 | 0.1 | 0.34 | 98.0 | 0.03 | 0 | 0.52 | 0.02 | 0.57 | 0.41 | |-------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 16 | 16 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 7 | 2 | 2 | 7 | 2 | | | P5_1 | m | m | м | М | m | m | m | m | m | m | 3 | 3 | 3 | m | n | 0 | 0 | | | P4_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ~ | — | | | P3_9c | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 7 | 2 | 7 | 2 | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | e e | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ~ | ~ | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | m | m | m | m | 3 | n | 33 | co | m | 3 | 3 | 3 | 3 | 3 | 33 | 3 | m | | | P1_2a | - | ~ | ~ | - | ~ | ~ | ~ | ~ | _ | - | - | ~ | _ | - | _ | _ | — | | L | ocality | WELLARD | WELLARD | WELLARD | WELLARD | WELLARD | | CASUARINA | | WELLARD | WELLARD | CASUARINA | | | CASUARINA | CASUARINA | MANDOGA-
LUP | | | | Туре | RD | RD | PWY | DR | RD | | SD. | | RD | RD. | DR | | | RD | DR | RD | | | Ro | ad Name | BARKER | BARKER | ALEXANDER | ARUNDEL | MORTIMER | | BORN | | BARKER | BARKER | LAVERY | | | MORTIMER | GOODMAN | CLEMENTI | | | Lot | t/ Rd No. | 4 | 8 | 27 | 73 | 240 | | 101 | | 135 | 171 | 15 | | | 343 | 14 | | | | Eas
Nort | ting (mE)
thing (mN) | 393563mE
6430466mN | 393581mE
6430351mN | 393589mE
6429766mN | 393622mE
6429427mN | 393652mE
6430607mN | 393657mE
6430696mN | 393684mE
6431752mN | 393742mE
6430697mN | 393786mE
6429508mN | 393875mE
6429401mN | 394549mE
6430737mN | 394552mE
6430751mN | 394639mE
6430728mN | 394649mE
6430738mN | 394652mE
6430781mN | 390615mE
6436350mN | 390647mE
6432428mN | | H | Area (ha) | 0 | 0.04 | 0 | 96.0 | 0.12 | 0.07 | 1.83 | 0.01 | 0 | 0.15 | 0.14 | 0.1 | 2.79 | 0 | 0.33 | 0.01 | 31.67 | |------------|---------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
16 | 16 | 16 | 16 | 16 | 16 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 7 | 7 | 2 | 7 | 2 | 7 | 7 | 2 | 7 | 7 | 7 | 2 | 7 | 2 | 7 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | — | - | - | — | - | — | _ | - | — | - | — | — | ~ | — | - | ~ | - | | | P3_9c | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 7 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | <u>9</u> . | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | — | — | - | - | — | — | ~ | — | — | - | - | - | _ | - | - | ~ | — | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 3 | c | c | æ | 3 | ω | co | c | cc | c | m | co | c | c | co | co | cc | | | P1_2a | _ | _ | _ | _ | - | - | _ | _ | ~ | _ | - | _ | _ | _ | - | _ | _ | | | Locality | | | | | | MANDOGA-
LUP | PARMELIA | ORELIA | ORELIA | PARMELIA | | MANDOGA-
LUP | MADOGALUP | | | | MANDOGA-
LUP | | | Туре | | | | | | SO . | RD | RD | RD | SD. | | SD. | RD | | | | RD | | Ro | oad Name | | | | | | MANDOGALUP | SULPHUR | THOMAS | THOMAS | SULPHUR | | MANDOGALUP | ROWELY | | | | ROWLEY | | Lo | ot/Rd No. | | | | | | 93 | | 530 | 989 | 8602 | | | | | | | 10 | | Ea
Noi | sting (mE)
rthing (mN) | 390663mE
6432422mN | 390670mE
6432421mN | 390685mE
6432990mN | 390685mE
6432991mN | 390687mE
6433002mN | 390733mE
6436698mN | 390734mE
6432755mN | 390767mE
6433089mN | 390793mE
6433106mN | 390835mE
6433097mN | 390837mE
6433118mN | 390851mE
6436618mN | 390953mE
6438510mN | 390999mE
6432326mN | 391036mE
6432346mN | 391041mE
6432365mN | 391058mE
6438608mN | | Ar | rea (ha) | 0.43 | 0.43 | 0 | 0 | 0.49 | 0.07 | 0.41 | 0 | 0.05 | 0.31 | 0.18 | 86.0 | 0.45 | 0 | 2.15 | 0.05 | 0.2 | |----------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 2 | 2 | 7 | 7 | 2 | 2 | 2 | 2 | 2 | 2 | 7 | 2 | 2 | 2 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | - | — | - | — | — | - | - | — | — | - | - | - | _ | - | _ | - | - | | | P3_9c | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 7 | 2 | 2 | 7 | 7 | 7 | 7 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 2 | 7 | 7 | 7 | 7 | 2 | 7 | 7 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | a | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | ~ | ~ | - | - | ~ | ~ | - | ~ | ~ | - | — | - | _ | _ | - | — | _ | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | co | co | 2 | 3 | 3 | 2 | 33 | 3 | c | c | 2 | 2 | 3 | 3 | 3 | 3 | 3 | | | P1_2a | - | ~ | _ | _ | - | _ | _ | _ | _ | _ | - | _ | _ | ~ | _ | ~ | ~ | | L | ocality | THE
SPECTA-CLES | | | | THE SPECTA-
CLES | THE SPECTA-
CLES | | | MANDOGA-
LUP | THE SPECTA-
CLES | MANDOGA-
LUP | THE SPECTA-
CLES | THE SPECTA-
CLES | | | MANDOGA-
LUP | MANDOGA-
LUP | | | Туре | DR | | | | LANE | LANE | | | RD | LANE | S S | LANE | 吕 | | | RD | RD | | Roa | ad Name | SPECTACLES | | | | MCDOWELL | MCDOWELL | | | ROWELY | MCDOWELL | ROWELY | MCDOWELL | McDOWELL | | | ROWELY | ROWELY | | Lot | :/ Rd No. | | | | | 24 | 28 | | | | 24 | | 28 | | | | | | | Eas | ting (mE)
hing (mN) | 391250mE
6433734mN | 391261mE
6433316mN | 391290mE
6433255mN | 391352mE
6438942mN | 391381mE
6433519mN | 391382mE
6433577mN | 391411mE
6433243mN | 391412mE
6433244mN | 391414mE
6438931mN | 391447mE
6433576mN | 391480mE
6438946mN | 391492mE
6433759mN | 391519mE
6433776mN | 391525mE
6433615mN | 391527mE
6433584mN | 391529mE
6438948mN | 391638mE
6438895mN | | Aı | rea (ha) | 0 | 0.24 | 1.96 | 0 | 0.08 | 1.83 | 90.0 | 0.52 | 0.48 | 0.72 | 0 | 0.71 | 2.63 | 0 | 3.26 | 2.1 | 2.6 | |-------------|------------------------|-----------------------|-----------------------|-----------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 7 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 7 | 7 | 7 | 2 | 7 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | - | - | - | - | - | - | - | - | - | - | ~ | - | _ | - | - | - | - | | | P3_9c | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 7 | 7 | 2 | 7 | 7 | 7 | 2 | 2 | 2 | 7 | 2 | 7 | 7 | 2 | 2 | 7 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | <u>.e</u> | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | - | _ | ~ | - | _ | - | ~ | - | - | ~ | ~ | - | ~ | ~ | _ | _ | - | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 0 | 3 0 | 0 | 0 | | | P1_2b | 1 3 | | . 3 | . 3 | . 3 | . 3 | . 3 | . 3 | . 3 | .3 | | ω | ω | | ← | .3 | 1 3 | | | P1_2a | | | | ` | | | _ | | | | _ | - | _ | · | ` | | | | L | ocality | MANDOGA-
LUP | MANDOGA-
LUP | MANDOGA-
LUP | | CASUARINA | CASUARINA | | ANKETELL | ANKETELL | CASUARINA | | CASUARINA | | | WANDI | ANKETELL | CASUARINA | | | Туре | 8 | RD | L00P | | RD | RD | | RD | RD | RD | | RD | | | RD | RD | 8 | | Roa | ad Name | ROWELY | ROWELY | BECKER | | ORTON | ORTON | | TREEBY | TREEBY | ORTON | | ORTON | | | ANKETELL | ANKETELL | ORTON | | Lot | t/Rd No. | | | | | 46 | 99 | | 48 | 95 | 09 | | 129 | | | 651 | 989 | 92 | | Eas
Nort | ting (mE)
hing (mN) | 391720mE
6438956mN | 391721mE
6438955mN | 391753mE
6438607mN | 391869mE
643240mN | 391906mE
6432386mN | 391959mE
6432576mN | 391971mE
6435492mN | 391988mE
6435226mN | 392008mE
6435137mN | 392009mE
6432542mN | 392156mE
6432276mN | 392199mE
6432281mN | 392230mE
6432661mN | 392230mE
6432661mN | 392317mE
6435687mN | 392337mE
6435351mN | 392355mE
6432607mN | | A | rea (ha) | 69:0 | 0.39 | 0 | 99.0 | 0 | 2.02 | 0.21 | 0 | 0.01 | 1.27 | 0.02 | 0.42 | 0.32 | 1.11 | 0.49 | 0.05 | 0.05 | |------------|--------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------
-----------------------| | | Score | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 7 | 2 | 7 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 7 | 7 | 2 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | - | — | - | - | — | — | - | — | - | - | — | - | _ | — | - | — | — | | | P3_9c | 7 | 2 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 2 | 2 | 2 | 7 | 2 | 7 | 7 | 7 | 7 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | <u>ia</u> | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | - | _ | ~ | - | — | — | - | - | — | _ | ~ | _ | _ | _ | _ | — | _ | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 0 | 0 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | 0 | | | P1_2c | 3 | ω | 3 0 | 3 | 3 0 | 3 0 | 3 0 | 3 0 | 3 0 | 3 0 | 3 0 | 0 | 0 | 3 | 3 | 3 0 | 3 0 | | | P1_2b | - | ← | ← | ← | ← | <u>~</u> | ← | - | ← | ← | ←
(*) | | 1 3 | ← | ← | ← | | | | P1_2a | | | ` | | ` | | | _ | | | _ | | _ | | | · | · | | l | .ocality | CASUARINA | ANKETELL | | CASUARINA | | ANKETELL | CASUARINA | | CASUARINA | CASUARINA | | WANDI | WANDI | CASUARINA | CASUARINA | | | | | Туре | RD | RD | | 8 | | 8 | 8 | | RD | RD | | 동 | 동 | S O | RD | | | | Ro | ad Name | ORTON | TREEBY | | LANDGREN | | TREEBY | ORTON | | ORTON | ORTON | | KENBY | KENBY | ORTON | ORTON | | | | Lo | t/ Rd No. | 96 | 28 | | 38 | | 28 | 96 | | 96 | 110 | | 21 | 21 | 110 | 110 | | | | Eas
Nor | sting (mE)
thing (mN) | 392375mE
6432386mN | 392389mE
6435438mN | 392400mE
6432641mN | 392407mE
6432263mN | 392421mE
6435665mN | 392443mE
6435567mN | 392446mE
6432639mN | 392449mE
6435506mN | 392506mE
6432575mN | 392508mE
6432407mN | 392509mE
6432642mN | 392521mE
6435924mN | 392625mE
6435968mN | 392639mE
6432549mN | 392640mE
6432441mN | 392640mE
6432416mN | 392642mE
6432639mN | | Aı | rea (ha) | 0.02 | 0.35 | 2.57 | 0.93 | 0.94 | 1.02 | 0.02 | 0 | 0 | 0.86 | 0.01 | 1.4 | 0 | 1.07 | 0.13 | 1.02 | 1.28 | |-------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 15 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ← | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 7 | 7 | 2 | 7 | 7 | 7 | 2 | 2 | 7 | 7 | 2 | 7 | 7 | 7 | 7 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | | | P4_1 | - | - | ~ | - | - | - | - | - | - | _ | - | - | ~ | - | — | — | — | | | P3_9c | 2 | 2 | 7 | 2 | 7 | 7 | 7 | 2 | 7 | 2 | 2 | 7 | 2 | 7 | 7 | 7 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | - | - | ~ | ~ | ~ | ~ | ~ | ~ | - | - | 0 | | .i. | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | _ | _ | _ | - | _ | _ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 0 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 | 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | | | P1_2c | 3 | 3 | 9 | С | 9 | ° | 8 | Б | 3 | | 3 0 | | | | ω | | | | | P1_2b
P1_2a | - | - | _ | - | — | ·- | ~ | τ, | - | ~ | ~- | ··· | <i>←</i> | - | - | — | - | | | F1_2a | | | | | | | | | | | | | | | | | | | L | ocality | | CASUARINA | ANKETELL | WANDI | WANDI | ANKETELL | | | | WELLARD | | WELLARD | WELLARD | WELLARD | WELLARD | WELLARD | KWINANA
BEACH | | | Туре | | RD | RD | RD | S
O | S
O | | | | 5 | | 5 | Ь | ь | J | J | SD . | | Ro | ad Name | | ORTON | ANKETELL | LYON | LYON | TREEBY | | | | BALKA | | BALKA | BALKA | BALKA | SHOULDER | SHOULDER | WELLARD | | Lot | :/ Rd No. | | 126 | 734 | 692 | 692 | 35 | | | | 9 | | m | 6 | 6 | 31 | 30 | 1059 | | Eas
Nort | ting (mE)
hing (mN) | 392646mE
6432530mN | 392675mE
6432414mN | 392678mE
6435372mN | 392692mE
6435847mN | 392735mE
6435871mN | 392841mE
6435331mN | 394031mE
6429700mN | 394120mE
6429793mN | 394137mE
6429789mN | 394200mE
6429747mN | 394201mE
6429748mN | 394209mE
6429774mN | 394232mE
6429958mN | 394319mE
6429857mN | 394328mE
6428515mN | 394421mE
6428538mN | 385735mE
6432183mN | | Ar | ea (ha) | 69.0 | 2.38 | 2.34 | 27.9 | 0.07 | 0.07 | 0.07 | 1.48 | 0.33 | 1.72 | 0.88 | 1.66 | 1.74 | 0.05 | 26.12 | 0 | 0.02 | |--------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|-----------------------|-----------------------|-----------------------| | | Score | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | | | P6_2 | - | — | _ | _ | — | — | - | — | - | _ | _ | _ | - | - | - | - | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 7 | 7 | 7 | 7 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 7 | 7 | 7 | 7 | 2 | | | P5_1 | 3 | 3 | m | 33 | c | c | 33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | - | - | - | - | - | — | - | - | — | - | — | — | _ | — | - | — | _ | | | P3_9c | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 7 | 7 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 7 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | <u>.e</u> | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | _ | _ | ~ | ~ | ~ | _ | ~ | ~ | ~ | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 7 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 3 0 | 3 0 | 3 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 0 | 0 0 | 0 0 | 3 0 | | | P1_2b | . 3 | ← | <., | ··· | | | | . 3 | . 3 | . 3 | 1 3 | . 3 | . 3 | ··· | 0 | 0 | ← | | | P1_2a | | | | | | | | | · | | | | | | | | | | L | ocality | | KWINANA
BEACH | LEDA | LEDA | | | | HOPEVALLEY | | HOPEVALLEY | HOPE VALLEY | HOPE VALLEY | HOPE VALLEY | HOPEVALLEY | HOPEVALLEY | | PARMELIA | | | Туре | | RD | SD . | 8 | | | | RD | | RD | RD | RD. | RD
CD | RD | RD | | <u>a</u> | | Roa | ad Name | | WELLARD | WELLARD | WELLARD | | | | MANDOGALUP | | MANDOGALUP | MANDOGALUP | MANDOGALUP | MANDOGALUP | MANDOGALUP | MANGDOGA-
LUP | | CAMPDEM | | Lot | / Rd No. | | | | | | | | 325 | | 317 | 311 | 297 | 289 | 177 | | | | | East
Nort | ting (mE)
hing (mN) | 385740mE
6431792mN | 385813mE
6431817mN | 385843mE
6431178mN | 386212mE
6430033mN | 386262mE
6430416mN | 386262mE
6430416mN | 386262mE
6430416mN | 389168mE
6438236mN | 389177mE
6438216mN | 389191mE
6438113mN | 389249mE
6438058mN | 389272mE
6438037mN | 389536mE
6438130mN | 389540mE
438040mN | 390044mE
6437371mN | 390223mE
6436337mN | 390230mE
6431437mN | | | Area (ha) | 0.15 | 0 | 0.36 | 0.01 | 0.03 | 0 | 0.01 | 0.34 | 0.22 | 0.03 | 0.28 | 0.62 | 0 | 0.22 | 0.21 | 1.96 | 0.71 | |-----------
-----------------------------|-----------------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 2 | 2 | 2 | 2 | 7 | 2 | 2 | 7 | 7 | 2 | 7 | 2 | 2 | 7 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | - | - | - | - | ~ | — | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 2 | 7 | 7 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | <u>.c</u> | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | — | — | — | — | - | - | - | - | - | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 3 | 3 | ω | 3 | 3 | c | 3 | 33 | m | c | cc | m | m | æ | æ | m | m | | | P1_2a | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | ٦ | _ | - | | | Locality | PARMELIA | | | | | | | | MANDOGA-
LUP | MANDOGA-
LUP | MANDOGA-
LUP | MANDOGA-
LUP | MANDOGA-
LUP | | MANDOGALUP | | MANDOGALUP | | | Туре | ≙ | | | | | | | AVE | 8 | RD | RD | 8 | 8 | | 8 | | RD | | R | toad Name | CAMPDEN | | | | | | | HUNTINGTON | NORKETT | NORKETT | MANDOGALUP | MANDOGALUP | ROWLEY | | MANDOGALUP | | MANDOGALUP | | L | ot/ Rd No. | | | | | | | | | <i>L</i> 9 | 29 | | 57 | 10 | | 99 | | 26 | | E. No | asting (mE)
orthing (mN) | 390284mE
6431571mN | 390538mE
64318833mN | 390548mE
6431911mN | 390551mE
6431922mN | 390554mE
6431868mN | 390580mE
6431868mN | 390626mE
6432075mN | 390789mE
6429028mN | 390870mE
6437553mN | 390913mE
6437631mN | 390960mE
6436481mN | 390965mE
6436402mN | 390973mE
6438923mN | 390979mE
6438935mN | 391016mE
6436450mN | 391067mE
6435949mN | 391084mE
6436408mN | | Aı | rea (ha) | 0.41 | 3.84 | 0.01 | 0.17 | 0.12 | 0 | 0 | 0.38 | 0.1 | 0.08 | 0.18 | 1.15 | 0.04 | 10.55 | 0.58 | 0.17 | |-------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 7 | 7 | 2 | 7 | 7 | 2 | 2 | 2 | 7 | 2 | 2 | 7 | 2 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | 0 | 0 | 0 | - | 0 | 0 | 0 | — | — | 0 | 0 | 0 | — | 0 | 0 | 0 | | | P3_9c | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 7 | 2 | 2 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | - | - | - | 0 | - | - | — | 0 | 0 | - | ~ | - | 0 | - | ← | | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 3 | m | e | m | m | m | c | c | 3 | 3 | c | 3 | 3 | 2 | m | 3 | | | P1_2a | - | - | ~ | — | — | ~ | _ | _ | — | _ | — | _ | _ | - | - | - | | L | ocality | MANDOGALUP | BERTRAM | | | BERTRAM | | | WELLARD | WELLARD | | MANDOGA-LUP | CASUARINA | WELLARD | | CASUARINA | MANDOGA-LUP | | | Туре | 8 | 8 | | PROM | RD | | | PKWY | IJ | 8 | SD. | FWY | BD | | SD. | RD | | Roa | ad Name | ANKETELL | SULPHUR | | McWHIRTER | JOHNSON | | | MOONSTONE | AURORA | ANKETELL | ROWELY | KWINANA | INDIGO | | THOMAS | ROWELY | | Lot | t/ Rd No. | 577 | 8601 | | | | | | | | | | | | | | | | Eas
Nort | ting (mE)
hing (mN) | 391107mE
6435838mN | 391118mE
6432921mN | 391237mE
6435761mN | 391255mE
6429036mN | 391416mE
6433224mN | 391424mE
6432702mN | 391424mE
6432698mN | 391589mE
6429598mN | 391713mE
6429384mN | 391747mE
6435659mN | 391760mE
6438943mN | 391775mE
6432904mN | 391782mE
6429391mN | 391798mE
6438361mN | 391810mE
6433396mN | 391869mE
6438902mN | | A | rea (ha) | 0.44 | 0.51 | 0.05 | 1.33 | 0.17 | 0.3 | 2.12 | 2.09 | 0.32 | 0 | 0.18 | 0.62 | 0 | 0.35 | 0 | 0.15 | |------------|--------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 7 | 2 | 7 | 7 | 2 | 2 | 7 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | — | 0 | 0 | 0 | 0 | 0 | 0 | - | - | — | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 2 | 2 | 2 | 2 | 7 | 2 | 7 | 2 | 2 | 7 | 2 | 2 | 2 | 2 | 2 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 2 | 2 | 2 | 7 | 2 | 2 | 2 | 2 | 7 | 2 | 7 | 7 | 2 | 2 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | , and | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | — | — | - | ~ | — | — | 0 | 0 | 0 | — | - | — | - | - | - | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | m | c | 3 | n | 3 | 3 | ~ | c | m | m | m | 33 | m | m | m | m | | | P1_2a | - | - | — | ~ | — | — | — | - | _ | ~ | - | _ | ~ | - | - | — | | l | Locality | WELLARD | | MANDOGA-LUP | | MANDOGA-LUP | WANDI | | WELLARD | | | ANKETELL | | ANKETELL | CASUARINA | | CASUARINA | | | Туре | RD | | RD | | RD | RD | RD | RD | | | RD | RD | RD | RD | | RD | | Ro | ad N ame | MILLAR | | ROWELY | | ROWLEY | ANKETELL | HOFFMAN | MILLAR | | | TREEBY | HOFFMAN | TREEBY | THOMAS | | THOMAS | | Lo | t/ Rd No. | 593 | | | | | 651 | | 593 | | | 74 | | 82 | | | | | Eas
Nor | sting (mE)
thing (mN) | 391892mE
6429351mN | 391899mE
6437314mN | 391934mE
6438898mN | 391961mE
6437125mN | 391966mE
6438874mN | 391987mE
6435715mN | 392002mE
6437456mN | 392107mE
6429398mN | 392122mE
6429490mN | 392127mE
6429440mN | 392133mE
6434960mN | 392136mE
6437384mN | 392137mE
6434885mN | 392140mE
6433342mN | 392147mE
6435878mN | 392155mE
6433488mN | | Ar | rea (ha) | 0 | 0.14 | 12.65 | 0.16 | 1.4 | 6.0 | 0.18 | 0.5 | 0.35 | 1.73 | 0 | 0.13 | 0.16 | 0.29 | 0.81 | 0.14 | |-----------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------
-----------------------|-----------------------|-----------------------|-----------------------| | : | Score | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 7 | 2 | 2 | 2 | 7 | 7 | 2 | 7 | 7 | 7 | 2 | 2 | 7 | 2 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | _ | — | _ | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | _ | 0 | - | 0 | | | P3_9c | 7 | 7 | 2 | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 7 | 2 | 2 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 7 | 2 | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 7 | 2 | 2 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | <u>.e</u> | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | - | - | - | - | - | 0 | — | — | — | 0 | ~ | 0 | - | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | c | 2 | cc | n | cc | 3 | 33 | co | c | 3 | m | cc | 3 | m | m | 3 | | | P1_2a | _ | _ | _ | _ | _ | _ | _ | ~ | _ | - | _ | _ | _ | _ | _ | _ | | L | ocality | | CASUARINA | WELLARD | ANKETELL | CASUARINA | WANDI | ANKETELL | ANKETELL | CASUARINA | WANDI | | WANDI | CASUARINA | | CASUARINA | WANDI | | | Туре | | S
S | SD. | RD | RD | 픙 | SD. | S
S | 8 | FWY | | П | RD | | RD | 동 | | Roa | ad Name | | ORTON | WOOLCOOT | TREEBY | ORTON | KENBY | TREEBY | THOMAS | LANDGREN | KWINANA | | ATALAYA | LANDGREN | | LANDGREN | KENBY | | Lot | :/ Rd No. | | 129 | | 74 | | 25 | 74 | 793 | 46 | | | | 38 | | 64 | 25 | | | ting (mE)
hing (mN) | 392160mE
6432031mN | 392202mE
6432063mN | 392204mE
6429458mN | 392221mE
6434969mN | 392279mE
6432954mN | 392287mE
6436097mN | 392300mE
6434974mN | 392322mE
6433709mN | 392334mE
6432209mN | 392342mE
6438354mN | 392342mE
6438356mN | 392365mE
6436245mN | 392434mE
6432254mN | 392437mE
6433490mN | 392440mE
6432009mN | 392466mE
6435968mN | | | Area (ha) | 0.4 | 4.87 | 0 | 0.33 | 0 | 0.14 | 0.89 | 0.37 | 1.19 | 0.3 | 69.0 | 0.26 | 0.1 | 0 | 1.25 | 0.26 | |----------|----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|-----------------------|-----------------------| | | Score | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 7 | 2 | 2 | 2 | 2 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | - | - | - | 0 | 0 | - | 0 | 0 | - | 0 | 0 | - | - | ~ | 0 | ~ | | | P3_9c | 2 | 7 | 2 | 7 | 2 | 2 | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 7 | 2 | 7 | 7 | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | a. | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | ~ | ~ | 0 | - | - | 0 | - | ~ | 0 | 0 | 0 | - | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 3 | 3 | m | 33 | 3 | 33 | m | c | 23 | n | c | 33 | m | 33 | cc | 33 | | | P1_2a | - | _ | - | - | ~ | _ | ~ | _ | _ | _ | _ | _ | _ | - | ~ | - | | | Locality | WELLARD | WELLARD | | ANKETELL | ANKETELL | CASUARINA | | CASUARINA | WELLARD | WANDI | | WELLARD | WELLARD | | | WELLARD | | | Туре | RD | RD | | RD | RD | RD | | SD
D | SD
D | 동 | | Ы | SD. | | | RD | | R | oad Name | WOOLCPPT | MILLAR | | THOMAS | THOMAS | LANDGREN | | ORTON | MILLAR | KENBY | | NELLA | WOOLCOOT | | | WOOLCOOT | | L | ot/ Rd No. | | 619 | | 811 | 819 | 46 | | 105 | 619 | 25 | | 9 | 185 | | | 185 | | Ea
No | nsting (mE)
rthing (mN) | 392473mE
6429517mN | 392477mE
6428634mN | 392481mE
6428642mN | 392484mE
6433782mN | 392485mE
6433779mN | 392499mE
6432233mN | 392506mE
6433169mN | 392515mN
6432865mN | 392534mE
6428988mN | 392553mE
6435996mN | 392605mE
6433194mN | 392637mE
6429138mN | 392638mE
6429095mN | 392663mE
643216mN | 392664mE
6432715mN | 392674mE
6429040mN | | A | rea (ha) | 0.07 | 0.39 | 0.7 | 0.54 | 0.26 | 0.17 | 0.42 | 9.65 | 0.26 | 0.03 | 1.37 | 0.07 | 0 | 0.31 | 0.18 | 1.14 | |----------|--------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 7 | 7 | 7 | 7 | 2 | 2 | 2 | 2 | 2 | 7 | 2 | 2 | 2 | 7 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | - | — | - | - | - | - | - | _ | - | - | - | - | - | - | - | — | | | P3_9c | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 2 | 7 | 7 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 2 | 2 | 2 | 2 | 7 | 7 | 2 | 2 | 7 | 7 | 2 | 2 | 2 | 2 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | .es | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | m | co | m | m | m | m | m | m | m | n | 3 | m | m | m | m | m | | | P1_2a | - | ~ | - | ~ | ~ | ~ | ~ | ~ | ~ | - | _ | ~ | — | ~ | ~ | - | | l | Locality | WELLARD | CASUARINA | CASUARINA | CASUARINA | CASUARINA | WELLARD | CASUARINA | | | | | WELLARD | | WELLARD | WELLARD | WELLARD | | | Туре | RD | | | | RD | | 占 | RD | RD | | Ro | ad N ame | WOOLCOOT | LANDGREN | LANDGREN | LANDGREN | LANDGREN | BRADDOCK | LANDGREN | | | | | BRADDOCK | | SHIPSEY | BRADDOCK | BRADDOCK | | Lo | t/ Rd No. | 185 | 45 | 27 | 57 | 57 | 173 | 27 | | | | | 128 | | 20 | 149 | 141 | | Eas | sting (mE)
thing (mN) | 392695mE
6429087mN | 392753mE
6432206mN | 392772mE
6432053mN | 392797mE
6432053mN | 392961mE
6432124mN | 393019mE
6428733mN | 393041mE
6432128mN | 393112mE
6428750mN | 393132mE
6428882mN | 393205mE
6428828mN | 393210mE
6428850mN | 393221mE
6428883mN | 393224mE
6428888mN | 393338mE
6428519mN | 393367mE
6428679mN | 393392mE
6428791mN | | A | rea (ha) | 0.92 | 0 | 0 | 0.2 | 0.01 | 0 | 0 | 1.61 | 1.3 | 0 | 1.71 | 0 | 1.53 | 0 | 1.36 | 0.01 | |-----------|--------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 5 | 15 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 7 | 7 | 2 | 7 | 7 | 2 | 2 | 2 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | — | - | - | - | - | - | - | - | - | - | - | ~ | - | - | - | — | | | P3_9c | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | <u>.e</u> | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | c | m | 3 | c | m | 3 | 3 | c | m | 3 | m | 3 | c | m | m | m | | | P1_2a | — | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | - | - | | ι | _ocality | WELLARD | WELLARD | | WELLARD | | | | WELLARD | WELLARD | | WELLARD | WELLARD | WELLARD | | WELLARD | | | | Туре | RD | 김 | | RD | | | | SO. | SO . | | Ч | Ы | Ч | | ď | | | Ro | ad N ame | BRADDOCK | SHIPSEY | | BRADDOCK | | | | BARKER | BRADDOCK | | SHIPSEY | SHIPSEY | SHIPSEY | | SHIPSEY | | | Lo | t/ Rd No. | 125 | 4 | | 125 | | | | 181 | 94 | | 20 | 21 | 16 | | 4 | | | | sting (mE)
thing (mN) | 393395mE
6428803mN | 393414mE
6428827mN | 393423mE
6428972mN | 393431mE
6428967mN | 393447mE
6428953mN | 393465mE
6428985mN | 393472mE
6428984mN | 393548mE
6428975mN | 393569mE
6428973mN | 393570mE
6428972mN | 393570mE
6428737mN | 393588mE
6428719mN | 393590mE
6428836mN | 393590mE
6428817mN | 393595mE
6428859mN | 393599mE
6428859mN | | | Area (ha) | 0 | 0.18 | - - | 0.71 | 0 | 2.02 | 1.05 | 99.0 | 0 | 0.4 | 1.49 | 0 | 0 | 0.14 | 0.12 | 0.02 | |---------|-----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 7 | 2 | 2 | 2 | 2 | 7 | 2 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | - | - | - | - | — | — | — | 0 | 0 | | — | - | - | ~ | - | | | | P3_9c | 2 | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 2 | 2 | 7 | 7 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | — | — | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ritoria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | m | m | m | m | 33 | c | m | 3 | m | m | co | 23 | 3 | m | m | 3 | | | P1_2a | - | - | - | - | ~ | ~ | _ | _ | _ | - | _ | ~ | _ | - | — | - | | | Locality | | WELLARD | WELLARD | WELLARD | | WELLARD | WELLARD | WELLARD | | WELLARD | WELLARD | | | WELLARD | WELLARD | WELLARD | | | Туре | | 김 | RD | Ч | | Ч | SD. | SD. | | RD | SD. | | | RD | RD | SO | | F | Road Name | | SHIPSEY | BRADDOCK | SHIPSEY | | SHIPSEY | BRADDOCK | BARKER | | DUCKPOND | BARKER | | | BRADDOCK | BRADDOCK | BRADDOCK | | l | .ot/ Rd No. | | 21 | 74 | 21 | | 13 | 79 | 43 | | 210 | 88 | | | 2 | 2 | 31 | | E
No | asting (mE)
orthing (mN) | 393599mE
6428738mN | 393733mE
6428700mN | 393747mE
6429161mN | 393774mE
6428657mN | 393781mE
6429059mN | 393838mE
6428796mN | 393882mE
6428894mN | 394011mE
6430351mN | 394012mE
6430350mN | 394015mE
6428588mN | 394039mE
6429731mN | 394099mE
6429794mN | 394106mE
6429829mN | 394147mE
6428692mN | 394186mE
6428754mN | 394204mE
6429037mN | | | Area (ha) | 0.21 | 0.11 | 0.68 | 0 | 0.25 | 0.45 | 0.16 | 0 | 0.22 | 0.76 | 0.38 | 0 | 1.07 | 0.64 | 1.32 | 0.14 | |----------|----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 7 | 7 | 2 | 7 | 2 | 2 | 2 | 7 | 7 | 7 | 2 | 7 | 2 | 7 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | — | _ | — | - | _ | - | — | - | - | - | - | - | — | — | — | _ | | | P3_9c | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 2 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 7 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 7 | 7 | 2 | 7 | 2 | 7 | 2 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | .00 | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | ω | c | ω | ω | 3 | cc | cc | co | 3 | 2 | cc | cc | m | m | m | co | | | P1_2a | _ | _ | _ | _ | — | _ | — | _ | _ | _ | _ | _ | ~ | - | - | - | | | Locality | WELLARD | WELLARD | WELLARD | | WELLARD | WELLARD | WELLARD | WELLARD | | | Туре | RD | | Ь | | SD. | | Ь | | SD. | S
S | RD | | Ь | Ы | Ы | b | | R | oad Name | BRADDOCK | | BALKA | | BRADDOCK | | BALKA | | BRADDOCK | BANKSIA | BRADDOCK | | BALKA | BALKA | BALKA | BALKA | | L | ot/ Rd No. | 23 | | 10 | | 2 | | 10 | | 23 | 95 | 7 | | 17 | 24 | 16 | 24 | | Ea
No | asting (mE)
rthing (mN) | 394227mE
6428876mN | 394236mE
6428699mN | 394246mE
6429740mN | 394247mE
6429742mN | 394260mE
6428716mN | 394276mE
6428705mN | 394296mE
6429734mN | 394296mE
6429735mN | 394301mE
6429008mN | 394305mE
6428794mN | 394307mE
6428846mN | 394314mE
6429731mN | 394327mE
6429761mN | 394347mE
6429589mN | 394366mE
6429705mN | 394396mE
6429639mN | | Ar | ea (ha) | 0.26 | 0 | 0.45 | 0.86 | 0.44 | 69.0 | 0.19 | 0.42 | 0.32 | 0.79 | 0.16 | 1.25 | 0.26 | 0.86 | 0.79 | 0.08 | |--------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 7 | 2 | 7 | 7 | 7 | 2 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | — - | — | | P3_9c | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 2 | 2 | 2 | 2 | 7 | 7 | 2 | 7 | 2 | 7 | 2 | 2 | 2 | 2 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | m | m | m | m | m | m | m | 3 | m | m | m | m | m | m | m | က | | | P1_2a | - | - | - | - | - | — | - | — | - | — | ~ | ~ | - | — | - | — | | Ŀ | ocality | WELLARD | | WELLARD CASUARINA | CASUARINA | | | Туре | b | | RD | RD | b | b | RD | SD. | RD | RD | 8 | b | 8 | RD | DR | DR | | Roa | ad Name | BALKA | | LYDON | BANKSIA | BALKA | BALKA | LYDON | LYDON | LYDON | MORTIMER | LYDON | WILKINSON | LYDON | IYDON | LAVERY | GOODMAN | | Lot | / Rd No. | 24 | | 85 | 87 | 23 | 23 | <i>L</i> 9 | 78 | 29 | 356 | 70 | 20 | 29 | 70 | 95 | 38 | | East
Nort | ting (mE)
hing (mN) | 394438mE
6429629mN | 394464mE
6430115mN | 394467mE
6430031mN | 394473mE
6428697mN | 394504mE
6429820mN | 394510mE
6429843mN | 394597mE
6429929mN | 394646mE
6430298mN | 394652mE
6429988mN | 394668mE
6430507mN | 394669mE
6430078mN | 394671mE
6430312mN | 394683mE
6429915mN | 394695mE
6430151mN | 394709mE
6431636mN | 394783mE
6431194mN | | | Area (ha) | 0.81 | 0.5 | 0.58 | 0.23 | 0.02 | 0.44 | 0.47 | 0 | 0 | 89.0 | 0 | 1.16 | 0.21 | 1.17 | 0.03 | 0.42 | |----------|---------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 7 | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | | — | — | — | - | — | - | - | - | - | - | - | — | ~ | ← | | | | P3_9c | 2 | 2 | 2 | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 7 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 7 | 2 | 2 | 2 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | m | m | m | М | m | m | m | m | m | m | m | m | m | m | m | m | | | P1_2a | - | - | — | - | - | - | - | - | - | — | ~ | - | — | - | - | — | | | Locality | CASUARINA | WELLARD | CASUARINA | WELLARD | WELLARD | WELLARD | WELLARD | CASUARINA | | WELLARD | | WELLARD | CASUARINA | CASUARINA | CASUARINA | CASUARINA | | | Туре | DR | 8 | NA
M | RD | b | RD | b | DR | | RD | | SD. | DR | DR | DR | DR | | R | oad Name | GOODMAN | LYDON | LAVERY | LYDON | WILKINSON | LYDON | WILKINSON | LAVERY | | MORTIMER | | LYDON | LAVERY | LAVERY | LAVERY | LAVERY | | L | ot/ Rd No. | 56 | 09 | 106 | 55 | 19 | 09 | 19 | 105 | | 366 | | 42 | 114 | 11 | 123 | 114 | | Ea
No | sting (mE)
rthing (mN) | 394795mE
6431184mN | 394798mE
6430044mN | 394806mE
6431354mN | 394807mE
6430001mN | 394821mE
6430486mN | 394828mE
6430184mN | 394828mE
6430317mN | 394832mE
6431642mN | 394834mE
6430028mN | 394870mE
6430579mN | 394872mE
6430600mN | 394881mE
6430068mN | 394887mE
6431454mN | 394890mE
6431544mN | 394892mE
6431634mN | 394898mE
6431264mN | | Aı | rea (ha) | 0.74 | 0.48 | 0 | 0.37 | 1.29 | 0.53 | 0.44 | 0.3 | 0.72 | 0.47 | 0.79 | 0.5 | 1.42 | 0 | 0.79 | 0.28 | |-------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 2 | 7 | 7 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | _ | - | - | - | - | - | — | — | - | — | - | - | — | - | — | ~ | | | P3_9c | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 7 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 7 | 7 | 7 | 2 | 2 | 7 | 7 | 2 | 7 | 2 | 7 | 7 | 7 | 2 | 7 | 7 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | \sim | m | m | m | m | m | 3 | 33 | 33 | m | 23 | 23 | 3 | m | c | c | | | P1_2a | _ | ~ | ~ | ~ | — | - | - | - | - | — | - | _ | ~ | - | ~ | ~ | | L | ocality | WELLARD | WELLARD | | | WELLARD | CASUARINA | CASUARINA | CASUARINA | CASUARINA | WELLARD | CASUARINA | CASUARINA | CASUARINA | CASUARINA | CASUARINA | CASUARINA | | | Туре | D | Ь | | | S | R | R | R | RD | RD | RD | RD | DR | RD | DR | RD | | Roa | ad Name | WILKINSON | WILKINSON | | | LYDON | LAVERY | LAVERY | LAVERY | CASUARINA | LYDON | CASUARINA | CASUARINA | LAVERY | CASUARINA | LAVERY | CASUARINA | | Lot | t/ Rd No. | 6 | 6 | | | 14 | 123 | 123 | 135 | 166 | 20 | 158 | 188 | 124 | 158 | 135 | 158 | | Eas
Nort | ting (mE)
hing (mN) | 394903mE
6430640mN | 394908mE
6430527mN | 394918mE
6429861mN | 394920mE
6429850mN | 394924mE
6430229mN | 394946mE
6431663mN | 394963mE
6431769mN | 394974mE
6431608nN | 394982mE
6431168mN | 394994mE
6430058mN | 394998mE
6431346mN | 395019mE
6430970mN | 395021mE
6431356mN | 395049mE
6431347mN | 395051mE
6431771mN | 395074mE
6431345mN | | | Aroa (ha) | 1.29 | 0.01 | 0.26 | 1.29 | 0.13 | 0.82 | 0.35 | 0.01 | 0.03 | 0 | 66.0 | 0 | 3.03 | 6.44 | 0.05 | 1.44 | |------------|-------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Area (ha) | - | 0. | 0. | - - | 0. | 0. | 0 | 0. | 0 | J | 0:0 | J | 'n | 9. | 0 | ÷ | | | Score | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 4 | 4 | 4 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | ~ | ~ | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 7 | 7 | 7 | 7 | 2 | 7 | 2 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | m | m | m | | | P4_1 | ~ | ~ | ~ | ~ | ~ | ~ | ~ | - | ~ | ~ | ~ | ~ | - | ~ | — | _ | | | P3_9c | 2 | 2 | 7 | 7 | 2 | 7 | 2 | 2 | 2 | 7 | 2 | 7 | 7 | 0 | 0 | 0 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 2 | 2 | 7 | 7 | 2 | 2 | 2 | 2 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | . <u>e</u> | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | |
P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | - | - | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | m | c | co | 3 | co | c | 3 | 33 | 33 | 3 | 33 | 2 | c | 0 | 0 | 0 | | | P1_2a | _ | - | - | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | 0 | 0 | 0 | | | Locality | CASUARINA | | CASUARINA | CASUARINA | CASUARINA | CASUARINA | CASUARINA | | | | WELLARD | | | HOPEVALLEY | | HOPEVALLEY | | | Туре | DR | | 8 | 8 | RD | DR | SD
D | | | | 8 | | | RD | | RD | | R | oad Name | LAVERY | | CASUARINA | CASUARINA | CASUARINA | LAVERY | CASUARINA | | | | CASUARINA | | | HOPE VALLEY | | HOPEVALLEY | | | ot/ Rd No. | 138 | | 166 | 180 | 188 | 141 | 188 | | | | 242 | | | 192 | | 198 | | Ea | asting (mE) | | Z | | | | | | z | z | z | z | z | z | z | Z | | | No | rthing (mŃ) | 395095mE
6431527mN | 395095mE
6431530mN | 395138mE
6431253mN | 395143mE
6431122mN | 395144mE
6430971mN | 395145mE
6431682mN | 395146mE
6431003mN | 395147mE
6431773mN | 395147mE
6431520mN | 395149mE
6431344mN | 395154mE
6430580mN | 395158mE
6430345mN | 395158mE
6430432mN | 386821mE
6437036mN | 386973mE
6436721mN | 387040mE
6437049mN | | A | rea (ha) | 9.97 | 0.58 | 0 | 0.92 | 0.03 | 0.01 | 0 | 0 | 0.01 | 0.01 | 0 | 0 | 90.0 | 0 | 0 | 0 | |-------------|--------------------------|-----------------------|-----------------------|-----------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 4 | 4 | 4 | 41 | 41 | 41 | 41 | 41 | 41 | 41 | 14 | 14 | 4 | 4 | 4 | 4 | | | P6_2 | | - | - | — | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 2 | 2 | 2 | 7 | 2 | 2 | 2 | 7 | 2 | 2 | 2 | 2 | 2 | 7 | 2 | | | P5_1 | m | m | m | m | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | ~ | ~ | ~ | ~ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 0 | 0 | 0 | 0 | 7 | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 7 | 7 | 7 | 2 | 7 | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | е | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | ~ | ~ | ~ | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 0 | 0 | 0 | 0 | ~ | c | 33 | 3 | m | m | æ | 3 | 33 | n | c | c | | | P1_2a | 0 | 0 | 0 | 0 | _ | - | _ | — | - | - | — | ~ | — | - | — | ~ | | L | .ocality | HOPE VALLEY | HOPEVALLEY | | HOPEVALLEY | | | | | | | | | | WELLARD | WELLARD | WELLARD | | | Туре | RD | RD | | RD | | | | | | | | | | 5 | 5 | 8 | | Ro | ad N ame | HOPE VALLEY | HOPE VALLEY | | HOPEVALLEY | | | | | | | | | | SAPPHIRE | SAPPHIRE | SAPPHIRE | | Lot | t/ Rd No. | 140 | 198 | | 268 | | | | | | | | | | 236 | 238 | 240 | | Eas
Nort | iting (mE)
thing (mN) | 387213mE
6436870mN | 387220mE
6437024mN | 387222mE
6436714mN | 38730mE
6436916mN | 391006mE
6431886mN | 391006mE
6431886mN | 391007mE
6431886mN | 391302mE
6432147mN | 391308mE
6432179mN | 391308mE
6432179mN | 391423mE
6430977mN | 391427mE
6430977mN | 391432mE
6431101mN | 391619mE
6430430mN | 391624mE
6430430mN | 391641mE
6430430mN | | Are | ea (ha) | 0.12 | 0 | 8.26 | 0.01 | 0.26 | 0 | 0.02 | 1.17 | 0.85 | 0.04 | 0.03 | 1.03 | 1.03 | 0.92 | 0.01 | 0.97 | |---------------|-----------------------|-----------------------|-----------------|------------------------------------|--|---|--|---|---|---|---|--|--|---|---|--|--| | | Score | 4 | 41 | 4 | 14 | 14 | 14 | 14 | 14 | 14 | 41 | 4 | 4 | 4 | 4 | 14 | 41 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 7 | 2 | 2 | 7 | 2 | 7 | 7 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 2 | 7 | 7 | 2 | 2 | 2 | 7 | 2 | 7 | 7 | 2 | 2 | 2 | 2 | 2 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 2 | 7 | 2 | 2 | 7 | 2 | 2 | 7 | 7 | 2 | 2 | 2 | 2 | 7 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | в | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 3 | 3 | m | 33 | 3 | c | 33 | c | 3 | m | cc | c | ~ | co | 3 | ж | | | P1_2a | _ | _ | _ | - | _ | _ | _ | _ | _ | - | - | _ | - | _ | - | - | | Lo | ocality | | | CASUARINA | | CASUARINA | | | CASUARINA | CASUARINA | CASUARINA | | CASUARINA | CASUARINA | CASUARINA | CASUARINA | CASUARINA | | | Туре | | | SD
SD | | SD . | | | Ы | DR | DR | | Ы | DR | Ы | RD | RD | | Roa | d Name | | | MORTIMER | | ORTON | | | 9901 | NICOLAS | NICOLAS | | 9907 | NICOLAS | 9901 | LANDGREN | LANDGREN | | Lot, | / Rd No. | | | 91 | | 129 | | | 35 | 41 | 33 | | 29 | 27 | = | 84 | 74 | | East
North | ing (mE)
hing (mN) | 391641mE
6430430mN | 987mE
1520mN | 037mE
0888mN | 162mE
1866mN | 168mE
1912mN | 199mE
0498mN | 199mE
0496mN | 231mE
1726mN | 242mE
1260mN | 248mE
1137mN | 305mE
0678mN | 318mE
1612mN | 319mE
1336mN | 337mE
1389mN | 353mE
1845mN | 392358mE
6431916mN | | East
North | ing (mE)
hing (mN) | 391641mE | 6430430mN | 6430430mN
391987mE
6431520mN | 6430430mN
391987mE
6431520mN
392037mE
643088mN | 643/430mN
391987mE
6431520mN
392037mE
643088mN
392162mE
6431866mN | 6430430mN
391987mE
6431520mN
392037mE
643088mN
392162mE
6431866mN
392168mE
6431912mN | 6430430mN
391987mE
6431520mN
392037mE
643088mN
392162mE
6431866mN
392168mE
6431912mN
392199mE
6430498mN | 6430430mN
391987mE
6431520mN
392037mE
6431866mN
392168mE
6431912mN
392199mE
6430498mN |
6430430mN
391987mE
6431520mN
392037mE
643088mN
392162mE
6431912mN
392199mE
6430496mN
392231mE
6430496mN | 9430430mN
391987mE
6431520mN
392037mE
643186mN
392168mE
6431912mN
392199mE
6430498mN
392231mE
6431726mN | 6430430mN
391987mE
6431520mN
392037mE
6431866mN
392168mE
6431912mN
392199mE
6430496mN
392231mE
643126mN
392242mE
6431260mN | 9430430mN
391987mE
6431520mN
392037mE
6431866mN
392168mE
6431912mN
392199mE
6430498mN
392231mE
6431726mN
392231mE
6431726mN
392242mE
6431726mN
392248mE
643137mN | 9430430mN
391987mE
6431520mN
392037mE
6431866mN
392168mE
6431912mN
392199mE
6430496mN
392242mE
6431260mN
392242mE
6431260mN
392248mE
643160mN
392305mE
643160mN | 6430430mN
391987mE
6431520mN
392037mE
6431866mN
392168mE
6431912mN
392199mE
6430498mN
392231mE
6431726mN
392242mE
6431726mN
392248mE
643160mN
392318mE
643160mN | 9430430mN
391987mE
6431520mN
392037mE
6431866mN
392162mE
6431912mN
392199mE
6430498mN
392243mE
6431726mN
392243mE
6431737mN
392318mE
643137mN
392319mE
6431336mN | 6430430mN
391987mE
6431520mN
392037mE
6431866mN
392162mE
6431912mN
392199mE
6430498mN
392249mE
6431726mN
392242mE
6431726mN
392248mE
643137mN
392318mE
6431137mN
392319mE
6431336mN
392319mE
6431336mN | | Area (ha) | | 0.16 | 0.42 | 0 | 0.01 | 0 | 0.62 | 0.87 | 0.01 | 1.38 | 0 | 0.64 | 0.93 | 0 | 0.01 | 1.56 | 0 | 1.3 | |-------------------------------|-----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 14 | 4 | 4 | 4 | 4 | 4 | 41 | 14 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 2 | 2 | 2 | 2 | 7 | 7 | 7 | 2 | 7 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 2 | 2 | 2 | 2 | 7 | 7 | 7 | 2 | 7 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | g. | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 3 | 3 | 3 | m | 3 | c | c | m | c | m | n | c | n | 3 | 33 | 3 | 3 | | | P1_2a | _ | ~ | - | ~ | — | - | - | ~ | _ | - | ~ | ~ | _ | _ | - | _ | - | | ı | Locality | CASUARINA | WELLARD | WELLARD | | | CASUARINA | WELLARD | | CASUARINA | CASUARINA | CASUARINA | CASUARINA | | CASUARINA | CASUARINA | CASUARINA | CASUARINA | | | Туре | 占 | RD | RD | | | Ы | 8 | | RD | DR | PL | DR | | RD | RD | RD | RD | | Ro | ad N ame | 9907 | MORTIMER | MORTIMER | | | 9901 | WOOLCOOT | | LANDGREN | NICOLAS | 9901 | NICOLAS | | LANDGREN | LANDGREN | LANDGREN | LANDGREN | | Lo | t/ Rd No. | 34 | 110 | 136 | | | 21 | | | 84 | 32 | 34 | 42 | | 77 | 85 | 57 | 82 | | Easting (mE)
Northing (mN) | | 392377mE
6431743mN | 392391mE
6430670mN | 392397mE
6430629mN | 392423mE
6431139mN | 392429mE
6431455mN | 392430mE
6431446mN | 392462mE
6429794mN | 392482mE
6431296mN | 392510mE
6431763mN | 392558mE
6431096mN | 392598mE
6431748mN | 392628mE
6431185mN | 392668mE
6431766mN | 392767mE
6431849mN | 392876mE
6431826mN | 392882mE
6432044mN | 393089mE
6431842mN | | | Area (ha) | | 0.26 | 0.89 | 0.25 | 1.19 | 0.86 | 0.01 | 0.85 | 0.74 | 0.38 | 0.72 | 0.57 | 0.71 | 0 | 1.16 | 0 | 2.0 | 0.11 | |---|----------------------------|----|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | | 4 | 4 | 4 | 4 | 4 | 4 | 14 | 14 | 14 | 14 | 14 | 4 | 4 | 4 | 4 | 4 | 4 | | | P6_ | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_ | _1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1 | 1b | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 7 | 7 | 2 | 7 | 7 | 7 | 2 | 2 | | | P5_ | _1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_ | _1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9 | 9c | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | | | P3_9 | 9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9 | 9a | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 7 | 2 | 7 | 2 | 7 | 2 | 2 | | | P3_ | _8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_7 | 7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | : | P3_1 | 7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_ | _6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_ | _5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_ | _4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3 | 3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3 | 3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2 | 2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2 | | cc | m | m | m | m | m | 3 | cc | 33 | 2 | 2 | 33 | 33 | m | m | m | co | | | P1_2 | 2a | _ | ~ | _ | _ | _ | ~ | _ | _ | _ | - | ~ | _ | _ | - | _ | - | _ | | | Locality | | WELLARD | WELLARD | CASUARINA | CASUARINA | CASUARINA | | CASUARINA | CASUARINA | CASUARINA | WELLARD | | CASUARINA | | CASUARINA | | CASUARINA | WELLARD | | | Туре | | Ы | DR | DR | DR | DR | | 8 | DR | DR | DR | | DR | | DR | | RD | ರ | | | Road Name | | NELLA | MCKEIG | NICOLAS | NICOLAS | NICOLAS | | NICOLAS | NICOLAS | NICOLAS | ARUNDEL | | NICOLAS | | NICOLAS | | MORTIMER | CHANDLER | | | Lot/ Rd No | o. | 51 | — | 131 | 122 | 136 | | 186 | 192 | 206 | 40 | | 180 | | 168 | | 223 | 25 | | | Easting (mE) Northing (mN) | | 393096mE
6429257mN | 393097mE
6430321mN | 393117mE
6431558mN | 393133mE
6431531mN | 393144mE
6431391mN | 393156mE
6431533mN | 393165mE
6431075mN | 393193mE
6431060mN | 393209mE
6430975mN | 393215mE
6429478mN | 393215mE
6431746mN | 393237mE
6431248mN | 393237mE
6431248mN | 393251mE
6431309mN | 393255mE
6431317mN | 393275mE
6430872mN | 393283mE
6429999mN | | Area (ha) | | 0.81 | 0.23 | 0.12 | 0.99 | 1.15 | 0.87 | 0.37 | 0.13 | 0.32 | 0.28 | 0.13 | 1.01 | 90.0 | 99.0 | 0.78 | 0.37 | 0.03 | |-------------------------------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 14 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 41 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | 2 | 7 | 2 | 2 | 7 | 7 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 7 | 2 | 2 | 7 | 7 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 2 | 7 | 7 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ت
ت | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | n | m | М | m | m | m | 33 | 3 | co | 33 | co | 3 | m | m | 33 | 33 | 3 | | | P1_2a | ~ | _ | - | ~ | _ | _ | ~ | ~ | ~ | - | ~ | _ | ~ | - | - | ~ | — | | L | ocality | CASUARINA | | WELLARD | CASUARINA | WELLARD | CASUARINA | CASUARINA | CASUARINA | WELLARD | CASUARINA | WELLARD | | Туре | DR | | DR | DR | Ъ | DR | DR | DR | DR | RD | DR | SD. | DR | DR | IJ | IJ | DR | | Ro | Road Name | | | MCKEIG | NICOLAS | BRUCE | NICOLAS | NICOLAS | NICOLAS | MCKEIG | BORN | MCKEIG | MORTIMER | MCKEIG | MCKEIG | BRUCE | BRUCE | MCKEIG | | Lot | t/ Rd No. | 149 | | 25 | 155 | 24 | 163 | 193 | 171 | 56 | 25 | 37 | 234 | 37 | 37 | 23 | 23 | 51 | | Easting (mE)
Northing (mN) | | 393316mE
6431742mN | 393325mE
6431035mN | 393416mE
6430331mN | 393420mE
6431511mN | 393421mE
6430344mN | 393428mE
6431322mN | 393432mE
6431082mN | 393435mE
6431270mN | 393450mE
6430034mN | 393452mE
6430962mN | 393497mE
6430221mN | 393514mE
6430674mN | 393527mE
6430184mN | 393531mE
6430328mN | 393547mE
6430443mN | 393551mE
6430344mN | 393557mE
6430233mN | | Area (ha) | | 0.25 | 0.12 | 90.0 | 0 | 0.02 | 0.27 | 0.43 | 0.02 | 2.89 | 0.01 | 0 | 90.0 | 0.12 | 0.07 | 1.46 | 0 | 0.94 | |-------------------------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 41 | 41 | 41 | 41 | 4 | 4 | 41 | 14 | 14 | 14 | 14 | 14 | 4 | 41 | 14 | 41 | 14 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 7 | 2 | 7 | 2 | 7 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | 7 | 2 | 7 | 7 | 7 | 7 | 2 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 7 | 7 | 2 | 7 | 7 | 7 | 2 | 2 | 2 | 2 | 2 | 2 | 7 | 2 | 7 | 2 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ria | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 4 0 | 0 4 | 0 | 0 | 4 0 | 4 0 | 4 0 | 4 0 | 4 0 | 4 0 | 4 0 | 4 0 | 4 0 | 4 0 | 4 0 | | | P3_3a | 0 | 0 | 0 | 7 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 0 | 7 0 | 7 0 | 7 0 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d
P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | m | m | e | ~ | m | m | ~ | ~ | cc | ~ | cc | m | 8 | ~ | 2 | c | 23 | | | P1_2a | - | - | - | _ | _ | _ | — | — | — | _ | — | — | _ | — | _ | — | — | | | _ | 0 | ≤ | ₹ | ₹ | | RINA | ⊻ | | ¥ | A | | | | | 0 | ≝ | | | L | ocality | WELLARD | CASUARINA | CASUARINA | CASUARINA | | CASUARI | CASUARINA | | CASUARINA | CASUARINA | WELLARD | | WELLARD | | WELLARD | CASUARINA | WELLARD | | | | >- | | | | | | | | | | | | _ | | | | | | | Туре | PWY | 8 | RD | RD | | S. | RD | | RD | 8 | RD | | PWY | | R | RD | DR | | Road Name | | ALEXANDER | BORN | BORN | BORN | | BORN | BORN | | BORN | BORN | BARKER | | ALEXANDER | | MCKEIG | BORN | MCKEIG | | Lot | :/ Rd No. | 40 | 101 | 91 | 69 | | 79 | 27 | | 59 | 35 | = | | 40 | | 78 | 46 | 88 | | Easting (mE)
Northing (mN) | | 393769mE
6429850mN | 393781mE
6431660mN | 393786mE
6431659mN | 393786mE
6431345mN | 393816mE
6431683mN | 393820mE
6431462mN | 393823mE
6431025mN | 393823mE
6431329mN | 393824mE
6431256mN | 393826mE
6431156mN | 393827mE
6430575mN | 393828mE
6431462mN | 393831mE
6429785mN | 393832mE
6431152mN | 393852mE
6430171mN | 393852mE
6431136mN | 393876mE
6430125mN | 139 | | Area (ha) | 0.21 | 0.32 | 0 | 0.44 | 0.05 | 0.45 | 0.72 | 1.23 | 0.03 | 0.28 | 1.38 | 1.06 | 0.74 | 0.81 | 0.24 | 0.02 | 0.01 | |---------|-----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 14 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 14 | 14 | 4 | 14 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 7 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ritoria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 3 | m | m | m | М | m | М | m | m | m | m | m | М | 2 | 3 | 3 | m | | | P1_2a | — | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ~ | _ | _ | _ | - | | | Locality | WELLARD | CASUARINA | CASUARINA | CASUARINA | | WELLARD | WELLARD | WELLARD | | WELLARD | WELLARD | CASUARINA | WELLARD | CASUARINA | WELLARD | | | | | Туре | ΡWΥ | RD | RD. | SD. | | RD | RD | RD | | DR | DR | RD | PWY | RD | RD | | | | F | Road Name | ALEXANDER | BORN | BORN | BORN | | BARKER | BARKER | BARKER | | MCKEIG | MCKEIG | BORN | ALEXANDER | BORN | MORTIMER | | | | l | .ot/ Rd No. | 44 | 09 | 92 | 20 | | 17 | 27 | 34 | | 88 | 8 | 34 | 44 | 46 | 284 | | | | E
No | asting (mE)
orthing (mN) | 393883mE
6429857mN | 393887mE
6431313mN | 393903mE
6431556mN | 393909mE
6430918mN | 393927mE
6430706mN | 393927mE
6430699mN | 393932mE
6430579mN | 393937mE
6430426mN | 393938mE
6430430mN | 393943mE
6430147mN | 393952mE
6430217mN | 393954mE
6431132mN | 393959mE
6429999mN | 393993mE
6431232mN | 394004mE
6430700mN | 394004mE
6430703mN | 394022mE
6430226mN | | A | rea (ha) | 0.17 | 0.02 | 1.01 | 0 | 0 | 0.27 | 1.22 | 0.01 | 0 | 0.31 | 0.98 | 0.01 | 0 | 0.63 | 0.05 | 0.28 | 1.57 | |-------------|-------------------------|-----------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------|-----------------------| | | Score | 41 | 41 | 41 | 41 | 4 | 4 | 14 | 14 | 14 | 14 | 14 | 4 | 41 | 14 | 4 | 14 | 14 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 2 | 2 | 7 | 7 | 2 | 7 | 7 | 2 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 7 | 7 | 7 | 2 | 7 | 7 | 2 | 2 | 2 | 7 | 2 | 2 | 7 | 2 | 2 | 2 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | es . | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | m | 3 | m | 3 | m | m | 3 | 33 | m | m | c | n | c | co | m | m | 33 | | | P1_2a | — | — | - | — | ~ | — | — | _ | — | ~ | ~ | — | _ | — | ~ | — | ~ | | ι | ocality | CASUARINA | | WELLARD | | CASUARINA | CASUARINA | WELLARD | | CASUARINA | WELLARD | WELLARD | | CASUARINA | WELLARD | WELLARD | WELLARD | CASUARINA | | | Туре | RD | | RD | | SD. | SD. | RD | | RD | SD. | SD. | | SO . | RD | RD | RD | RD | | Ro | ad Name | BORN | | BARKER | | ORTON | BORN | BARKER | | BORN | BARKER | BARKER | | BORN | LYDON | BARKER | LYDON | BORN | | Lot | t/ Rd No. | 26 | | 55 | | 288 | 92 | 99 | | 09 | 55 | 78 | | 89 | 129 | 55 | 120 | 20 | | Eas
Nort | ting (mE)
thing (mN) | 394022mE
6431033mN | 394027mE
6430226mN | 394037mE
6430247mN | 3940478mE
6430129mN | 394049mE
6431768mN | 394055mE
6431572mN | 394058mE
6430099mN | 394059mE
6430099mN | 394060mE
6431243mN | 394077mE
6430125mN | 394081mE
6429961mN | 394097mE
6429915mN | 394110mE
6431454mN | 394113mE
6429992mN | 394121mE
6430199mN | 394125mE 6430167m | 394137mE
6430918mN | | Aı | rea (ha) | 0.5 | 0 | 0 | 1.7 | 1.52 | 0.85 | 0.03 | 69:0 | 2.25 | 0 | 0 | 0.54 | 0.11 | 2.84 | 0 | 1.37 | 2.41 | |-------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 4 | 41 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 41 | 41 | 41 | 4 | 4 | 4 | 4 | 4 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 7 | 7 | 2 | 7 | 7 | 2 | 7 | 2 | 7 | 2 | 2 | 7 | 7 | 7 | 7 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 2 | 7 | 7 | 2 | 7 | 7 | 7 | 7 | 2 | 7 | 7 | 2 | 7 | 7 | 7 | 7 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Э | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | m | 33 | 3 | m | М | m | m | 3 | m | 3 | m | m | m | m | m | m | m | | | P1_2a | ~ | ~ | _ | - | ~ | _ | ~ | _ | ~ | - | - | ~ | - | - | - | - | ~ | | L | ocality | CASUARINA | WELLARD | WELLARD | WELLARD | CASUARINA | WELLARD | CASUARINA | WELLARD | CASUARINA WELLARD | CASUARINA | | | Туре | RD | Ч | SD . | 김 | RD | RD | SD
SD | 80 | SO . | ರ | ರ | RD | RD | SD. | ರ | SD. | RD | | Ro | ad Name | BORN | THORNE | NOGAT | THORNE | BORN | LYDON | BORN | LYDON | BORN | MELALEUCA | MELALEUCA | BORN | BORN | BORN | MELALEUCA | LYDON | BORN | | Lot | t/ Rd No. | 34 | 22 | 120 | 22 | 46 | 120 | 92 | 129 | 102 | 21 | 17 | 34 | 46 | 80 | 2 | 11 | 9 | | Eas
Nort | ting (mE)
hing (mN) | 394151mE
6431128mN | 394156mE
6430307mN | 394156mE
6430300mN | 394171mE
6430309mN | 394180mE
6431236mN | 394200mE
6430191mN | 394230mE
6431665mN | 394231mE
6430003mN | 394231mE
6431753mN | 394233mE
6431739mN | 394234mE
6431685mN | 394235mE
6431050mN | 394236mE
6431151mN | 394236mE
6431529mN | 394237mE
6431542mN | 394242mE
6429971mN | 394245mE
6430800mN | | Aı | rea (ha) | 0 | 1.32 | 1.07 | 1.59 | 1.33 | 0.93 | 6.0 | 1.19 | 0.02 | 0.18 | 0.23 | 0 | 1.06 | 0.94 | 1.09 | 0.14 | 0.74 | |-------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 14 | 14 | 14 | 14 | 4 | 4 | 4 | 4 | 14 | 14 | 4 | 4 | 14 | 14 | 14 | 14 | 14 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 2 | 2 | 7 | 2 | 2 | 7 | 7 | 7 | 7 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 7 | 7 | 2 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 7 | 2 | 7 | 7 | 7 | 2 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 2 | 2 | 2 | 7 | 7 | 7 | 2 | 7 | 7 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | <u>ë</u> . | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 0 | 0 0 | 0 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | 0 0 | 0 | 0 | 0 0 | 0 0 | 0 0 | 0 0 | | | P1_2c | 8 | ω | 8 | 3 | 9 | 9 | 8 | 3 | 3 | 8 | 3 | 3 0 | 3 0 | 3 | 8 | e
e | 3 | | | P1_2b | <i>←</i> | ← | ··· | ··· | (·) | (I) | ← | ← | - | - | <u>~</u> | <u>~</u> | <u>~</u> | - | - | ← | - | | | P1_2a | | | | | | | | · | | | · | ` | ` | | | | · | | L | ocality | CASUARINA | CASUARINA | CASUARINA | CASUARINA | WELLARD | CASUARINA | CASUARINA | WELLARD | | CASUARINA | WELLARD | WELLARD | CASUARINA | WELLARD | CASUARINA | CASUARINA | WELLARD | | | Туре | RD | DR | DR | DR | SD. | DR | 80 | RD | | RD | 占 | 占 | ป | RD | DR | IJ | 김 | | Ro | ad Name | MORTIMER | LAVERY | LAVERY | LAVERY | LYDON | LAVERY | MORTIMER | LYDON | | MORTIMER | THORNE | THORNE | MELALEUCA | LYDON | LAVERY | MELALEUCA | THORNE | | Lot | t/Rd No. | 317 | 39 | 59 | 29 | 106 | 73 | 317 | 95 | | 319 | 24 | 25 | 21 | 88 | 49 | 21 | 24 | | Eas
Nort | ting (mE)
hing (mN) | 394248mE
6430819mN | 394255mE
6431027mN | 394258mE
6431244mN | 394263mE
6430934mN | 394266mE
6430175mN | 394307mE
6431442mN | 394346mE
6430732mN | 394347mE
6429956mN | 394357mE
6430140mN | 394371mE
6430734mN | 394390mE
6430401mN | 394407mE
6430312mN | 394408mE
6431719mN | 394408mE
6430156mN | 394413mE
6431154mN | 394414mE
6431672mN | 394417mE
6430469mN | | Aı | rea (ha) | 0 | 0 | 80.0 | 0.68 | 0.3 | 1.08 | 0 | 1.03 | 0.02 | 0.98 | 0.17 | 1.05 | 0.92 | 96.0 | 1.37 | 1.25 | 0 | |----------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 41 | 4 | 4 | 4 | 14 | 4 | 4 | 4 | 41 | 14 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 7 | 2 | 2 | 7 | 7 | 2 | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 7 | 7 | 7 | 2 | 7 | 7 | 2 | 2 | 2 | 2 | 2 | 7 | 7 | 7 | 7 | 2 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | а | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
| 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 3 | n | 3 | c | m | m | m | m | m | c | 3 | m | 3 | m | m | m | m | | | P1_2a | _ | ~ | _ | ~ | _ | ~ | - | ~ | — | - | - | - | ~ | _ | ~ | _ | - | | L | ocality | | | | CASUARINA | CASUARINA | CASUARINA | | CASUARINA | | CASUARINA | CASUARINA | WELLARD | CASUARINA | CASUARINA | CASUARINA | CASUARINA | WELLARD | | | Туре | | | | U | RD | J | | Cl | | IJ | DR | 김 | DR | DR | DR | DR | Ы | | Ro | ad Name | | | | MELALEUCA | MORTIMER | MELALEUCA | | MELALEUCA | | MELALEUCA | LAVERY | THORNE | LAVERY | LAVERY | LAVERY | LAVERY | THORNE | | Lot | t/ Rd No. | | | | 17 | 319 | 16 | | 2 | | 10 | 15 | 25 | 20 | 09 | 32 | 64 | 21 | | | ting (mE) | 394418mE
6431688mN | 394423mE
6431135mN | 394427mE
6431121mN | 394436mE
6431522mN | 394438mE
6430902mN | 394453mE
6431628mN | 394456mE
6431417mN | 394474mE
6431453mN | 394474mE
6431453mN | 394505mE
6431474mN | 394526mE
6430937mN | 394536mE
6430312mN | 39458mE
6431134mN | 394633mE
6431244mN | 394633mE
6431097mN | 394634mE
6431342mN | 394651mE
6430341mN | | A | rea (ha) | 9.0 | 0.3 | 0.77 | 0.53 | 0 | 0.05 | 0.53 | 0.34 | 0 | 0 | 0.05 | 0.05 | 0.03 | 0.04 | 0.04 | 0.04 | 0.02 | |-------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | — | ~ | - | _ | - | ~ | _ | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 7 | 7 | 2 | 2 | 7 | 7 | 7 | 2 | 2 | 2 | 2 | 2 | 7 | 7 | 2 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | - | _ | ~ | _ | _ | — | | | P3_9c | 7 | 7 | 2 | 7 | 7 | 2 | 2 | 2 | 2 | 2 | 7 | 7 | 7 | 2 | 2 | 2 | 7 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 7 | 7 | 2 | 7 | 7 | 2 | 7 | 2 | 2 | 2 | 7 | 7 | 7 | 2 | 2 | 2 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | — | — | — | — | - | - | _ | | <u>:ia</u> | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | | | P1_2b | | | | . 3 | | | | | | . 3 | 0 0 | 0 0 | 0 0 | 0 | 0 0 | 0 0 | 0 0 | | | P1_2a | _ | ` | ` | | , | | | _ | _ | _ | J | 0 | 0 | | J | J | J | | l | ocality | WELLARD | CASUARINA | CASUARINA | CASUARINA | | CASUARINA | CASUARINA | CASUARINA | | | WELLARD | | Туре | Ч | DR | DR | DR | | DR | SD. | DR | | | ٦ | ט | COVE | CNR | COVE | LANE | CNR | | Ro | ad Name | THORNE | GOODMAN | GOODMAN | GOODMAN | | GOODMAN | MORTIMER | GOODMAN | | | MELFORD | MELFORD | HINTON | AMPTON | HINTON | SPINNER | AMPTON | | Lot | t/ Rd No. | 21 | 20 | 38 | 7. | | 26 | 375 | 19 | | | 7 | 10 | 6 | 4 | 10 | 14 | 16 | | Eas
Nort | ting (mE)
hing (mN) | 394653mE
6430354mN | 394656mE
6431054mN | 394751mE
6431247mN | 394792mE
6430852mN | 394818mE
6431167mN | 394818mE
6431169mN | 394896mE
6430847mN | 394983mE
6430967mN | 395091mE
6429571mN | 395092mE
6429572mN | 389295mE
6429065mN | 389301mE
6429033mN | 389306mE
6429004mN | 389307mE
6429090mN | 389312mE
6428970mN | 389323mE
6429033mN | 389324mE
6429111mN | | A | rea (ha) | 0.05 | 0.05 | 0.01 | 0.08 | 90.0 | 0.01 | 0.03 | 0.1 | 0.01 | 0.05 | 0.01 | 0 | 0 | 90.0 | 0.08 | 0.08 | 0.05 | |------------|--------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | | | P6_2 | — | - | _ | — | _ | — | ~ | ~ | - | - | _ | - | — | - | - | — | ← | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 2 | 7 | 2 | 7 | 7 | 7 | 2 | 2 | 2 | 2 | 2 | 7 | 2 | 2 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | - | - | - | — | _ | _ | - | ~ | - | - | - | - | ~ | — | - | - | - | | | P3_9c | 2 | 2 | 7 | 2 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | 7 | 7 | 2 | 7 | 2 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 2 | 7 | 2 | 7 | 7 | 7 | 7 | 2 | 2 | 7 | 7 | 2 | 2 | 7 | 2 | 2 | | | P3_8 | ~ | - | ~ | ~ | ~ | _ | _ | - | _ | - | _ | _ | - | - | - | - | - | | ria | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 4 0 | 4 0 | 4 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 0 4 | 0 | 0 | 0 | 4 | 4 | 4 | 4 | 0 4 | 0 | 0 | 0 | 0 4 | 0 4 | 0 | 0 | 0 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d
P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 11_20 | 3D | æ | Q | Q2 | ARD | ARD | Q | Q | | ARD | Q | | Q | Q. | ARD | Q | æ | | ا | Locality | WELLARD | WELLARD | WELLARD | WELLARD | WELLA | WELLA | WELLARD | WELLARD | | WELLAF | WELLARD | | WELLARD | WELLARD | WELLA | WELLARD | WELLARD | | | Type | LANE | LANE | CNR | LANE | LANE | GR | æ | LANE | | ST | L00P | | 100b | GR | ST | ST | LANE | | Ro | ad Name | SPINNER | SPINNER | AMPTON | SPINNER | SPINNER | ASHBY | ASHBY | SPINNER | | SILVERSMITH | BEAUCHAMP | | BEAUCHAMP | ASHBY | SILVERSMITH | SILVERSMITH | SPINNER | | Lo | t/ Rd No. | 12 | 12 | 18 | 16 | 10 | 9 | 2 | ∞ | | 28 | 149 | | 153 | m | 30 | 32 | 9 | | Ea:
Nor | sting (mE)
thing (mN) | 389337mE
6429075mN | 389337mE
6429075mN | 389349mE
6429131mN | 389350mE
6428945mN | 389366mE
6429116mN | 389370mE
6429148mN | 389391mE
6429165mN | 389403mE
6429137mN | 389406mE
6429344mN | 389409mE
6429522mN | 389412mE
6429491mN | 389412mE
6428973mN | 389417mE
6429463mN | 389418mE
6429187mN | 389419mE
6429455mN | 389426mE
6429419mN | 389428mE
6429165mN | | Ar | rea (ha) | 0.09 | 0.05 | 0.04 | 0 | 0.08 | 60.0 | 0.16 | 0.02 | 90.0 | 0.09 | 0 | 0 | 0.07 | 0 | 0.25 | 1.53 | 0.03 | |----------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | | | P6_2 | - | — | — | - | — | _ | _ | _ | _ | _ | _ | _ | — | — | — | ~ | ~ | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 7 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | - | - | - | — | — | _ | - | - | ~ | _ | - | _ | _ | - | _ | — | - | | | P3_9c | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | | | P3_8 | — | - | - | - | _ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | 0 | 0 | 0 | | е | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria |
P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | — | ~ | _ | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | L | ocality | WELLARD | | WELLARD | | | PARMELIA | | | | Туре | WAY | ST | WAY | WAY | ST | ST | ST | LANE | ST | ST | | | ST | | SD
D | AV | | | Roa | ad Name | WALPOLE | SILVERSMITH | WALPOLE | WALPOLE | SILVERSMITH | SILVERSMITH | SILVERSMITH | SPINNER | SILVERSMITH | SILVERSMITH | | | SILVERSMITH | | ANKETELL | DURRANT | | | Lot | / Rd No. | 24 | 34 | 22 | 20 | 40 | 42 | 44 | 4 | 88 | 36 | | | 46 | | | 15 | | | | ting (mE)
hing (mN) | 389430mE
6429318mN | 389431mE
6429392mN | 389434mE
6429285mN | 389436mE
6429269mN | 389437mE
6429261mN | 389442mE
6429219mN | 389442mE
6429217mN | 389458mE
6429181mN | 389460mE
6429329mN | 389504mE
6429373mN | 389511mE
6429215mN | 389521mE
6429204mN | 389529mE
6429184mN | 389530mE
6429189mN | 389851mE
6435573mN | 390157mE
6432721mN | 390184mE
6432634mN | | A | rea (ha) | 0 | 0 | 0.17 | 0.21 | 0.53 | 0 | 2.92 | 0.05 | 0.05 | 0.03 | 0.04 | 0.03 | 0.04 | 0.02 | 0.01 | 0.1 | 0.01 | |-------------|--------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | | P6_2 | _ | ~ | — | ~ | ~ | — | ~ | — | — | ~ | — | | ~ | — | - | - | ~ | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 7 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | - | _ | _ | _ | _ | _ | _ | — | _ | _ | ~ | ~ | _ | _ | - | - | _ | | | P3_9c | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 7 | 7 | 7 | 7 | 2 | 7 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | i <u>a</u> | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | _ | _ | _ | _ | _ | _ | _ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c
P1_2b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 11_20 | | ∢ | | | ∢ | | < 1 | | | | | | _ | 0 | | | | | ι | ocality. | PARMELIA | PARMELIA | | | PARMELIA | | PARMELIA | WELLARD | | Туре | WAY | WAY | RD | | ¥ | | S
D | LOOP 100P | DR | DR | | Ro | ad N ame | HEFRON | DAWSON | ANKETELL | | DURRANT | | SULPHUR | BEAUCHAMP HOMESTEAD | HOMESTEAD | | Lo | t/Rd No. | 35 | 15 | | | 15 | | | 109 | 113 | 105 | 117 | 101 | 121 | 125 | 97 | 18 | 28 | | Eas
Nort | sting (mE)
thing (mN) | 390214mE
6432608mN | 390219mE
6432604mN | 390221mE
6435793mN | 390229mE
6432597mN | 390276mE
6432620mN | 390484mE
6432988mN | 390493mE
6432969mN | 389284mE
6429764mN | 389289mE
6429731mN | 389290mE
6429795mN | 389294mE
6429702mN | 389296mE
6429824mN | 389309mE
6429691mN | 389310mE
6429677mN | 389315mE
6429871mN | 389317mE
6429870mN | 389319mE
6429660mN | | Ar | rea (ha) | 0.03 | 0.01 | 0.02 | 0.08 | 60.0 | 0.01 | 90.0 | 0.02 | 0.1 | 0.02 | 0.01 | 0.02 | 0.02 | 0.01 | 90.0 | 0.01 | 0.02 | |--------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | : | Score | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | | P6_2 | _ | _ | _ | _ | _ | _ | ~ | ~ | ~ | ~ | — | ~ | _ | _ | — | — | - | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 7 | 7 | 7 | 2 | 7 | 7 | 2 | 2 | 2 | 2 | 2 | 7 | 2 | 2 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | — | _ | - | _ | _ | _ | - | - | ~ | _ | — | — | _ | - | - | _ | _ | | | P3_9c | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | g
g | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | L | ocality | WELLARD | | Туре | DR | LOOP | LOOP | DR | DR | LOOP | DR | 100P | T000 | | Roa | ad Name | HOMESTEAD | ВЕАОСНАМР | ВЕАОСНАМР | HOMESTEAD | HOMESTEAD | BEAUCHAMP | BEAUCHAMP | | Lot | / Rd No. | 56 | 93 | 129 | 24 | 22 | 89 | 30 | 85 | 20 | 133 | 16 | 81 | 32 | 137 | 41 | 17 | 75 | | Eas:
Nort | ting (mE)
hing (mN) | 389324mE
6429727mN | 389327mE
6429894mN | 389327mE
6429624mN | 389329mE
6429764mN | 389330mE
6429799mN | 389330mE
6429910mN | 389333mE
6429651mN | 389341mE
6429939mN | 389343mE
6429832mN | 389345mE
6429598mN | 389346mE
6429905mN | 389353mE
6429968mN | 389356mE
6429622mN | 389358mE
6429595mN | 389365mE
6429938mN | 389365mE
6429993mN | 389380mE
6430011mN | | Aı | rea (ha) | 0.38 | 0.39 | 0.74 | 0.65 | 1.39 | 0 | 29.68 | 6.57 | 0 | 0.13 | 15.67 | 0 | 0.02 | 0.01 | 0.01 | 0.36 | 0.33 | |----------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | = | E | E | E | = | E | = | = | = | = | = | = | Ξ | Ξ | = | = | E | | | P6_2 | — | - | - | — | - | - | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 2 | 7 | 7 | 2 | 2 | 2 | 2 | 2 | 2 | 7 | 2 | 7 | 7 | 2 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | _ | 0 | 0 | 0 | _ | — | | | P3_9c | 7 | 2 | 7 | 7 | 2 | 0 | 0 | 7 | 7 | 2 | 7 | 7 | 7 | 7 | 2 | 7 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 7 | 7 | 7 | 7 | 2 | 7 | 2 | 2 | 2 | 7 | 2 | 7 | 7 | 2 | 7 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | — | 0 | - | - | — | 0 | 0 | | а | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 3 | 33 | 3 | 3 | m | cc | 33 | c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2a | - | _ | _ | _ | _ | _ | _ | _ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | L | ocality | KWINANA
BEACH | KWINANA
BEACH | KWINANA
BEACH | KWINANA
BEACH | KWINANA
BEACH | | | | | WELLARD | | | | | | | | | | Туре | SD
SD | S
S | 8 | RD | RD | | | | | PDE | | | | | | | | | Ro | ad Name | PORT | PORT | PORT | PORT | PATERSON | | | | | BRENTFORD | | | | | | | | | Lot | t/ Rd No. | 49 | 49 | 49 | 49 | | | | | | 22 | | | | | | | | | | ting (mE) | 383213mE
6431518mN | 383247mE
6431317mN | 383271mE
6431542mN | 383613mE
6431346mN | 384001mE
6431207mN | 384390mE
6433982mN | 384449mE
6434369mN | 385609mE
6431904mN | 388240mE
6431357mN | 388337mE
6428671mN | 38836mE
6431482mN | 388388mE
6428601mN | 388458mE
6430813mN | 388562mE
6430961mN | 388571mE
6431017mN | 388591mE
6428824mN | 388600mE
6428408mN | | | Area (ha) | | 1.04 | 0 | 6.7 | 0.11 | 0 | 0 | 0.01 | 0.7 | 90.0 | 0.01 | 0 | 0 | 0 | 0.12 | 0.14 | 0.01 | 0 | |----------|---------------------------|---------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | | = | # | = | = | 1 | 1 | = | = | 7 | = | = | 7 | = | = | = | = | = | | | P6_2 | | 0 | 0 | _ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1k |) | 7 | 2 | 7 | 7 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | | | P5_1 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | | _ | - | ~ | — | _ | _ | _ | - | _ | - | - | - | - | - | ~ | — | - | | | P3_9 | С | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | P3_9k |) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | a | 2 | 2 | 7 | 7 | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | | | P3_8 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | , co | P3_7l |) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | | 0 | 0 | _ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3k |) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_20 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2k | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2a | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Locality | | WELLARD | | HOPE VALLEY | WELLARD | | | | WELLARD | | | | | | | | WELLARD | | | | Туре | | PDE | | 8 | PDE | | | | PDE | | | | | | | | PROM | | | R | oad Name | | BRENTFORD | | POSTANS | BRENTFORD | | | | BRENTFORD | | | | | | | | SOMERFORD | | | | ot/ Rd No. | | 22 | | | 22 | | | | 22 | | | | | | | | 54 | Ea
No | asting (mE)
rthing (mN |)
I) | 388610mE
6428551mN | 388614mE
6428851mN | 388670mE
6437861mN | 388675mE
6428602mN | 388680mE
6428610mN | 388704mE
6429217mN | 388710mE
6429173mN | 388716mE
6429222mN | 388741mE
6428945mN | 388787mE
6428854mN | 388838mE
6428320mN | 388849mE
6428541mN | 388849mE
6428548mN | 388942mE
6429335mN | 388957mE
6429448mN | 389035mE
6428469mN | 389048mE
6428437mN | | Ar | rea (ha) | 0.01 | 0.01 | 90.0 | 0.01 | 0 | 0 | 0.13 | 0 | 0.04 | 0.05 | 0 | 0.02 | 0.03 | 0.01 | 0.01 | 0.19 | 0 | |----------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 7 | = | = | 7 | = | = | E | = | = | E | Ξ | Ξ | E | = | 7 | = | = | | | P6_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | — | — | ~ | _ | — | — | — | - | — | _ | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 7 | 2 | 7 | 2 | 7 | 7 | 7 | 2 | 2 | 2 | 7 | 7 | 2 | 2 | 2 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | - | — | - | — | - | — | — | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 7 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 7 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9 | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ι | ocality | WELLARD | WELLARD | | WELLARD | WELLARD | WELLARD | | WELLARD | | | WELLARD | WELLARD | WELLARD | WELLARD | | WELLARD | | | | Туре | PROM | PROM | | PROM | PROM | PROM | | IJ | | | Ь | LANE | b | L | | LANE | | | Roa | ad Name | SOMERFORD | SOMERFORD | | SOMERFORD | SOMERFORD | SOMERFORD | | COMBS | | | COMBS | SPINNER | KABER | KABER | | SPINNER | | | Lot | :/ Rd No. | 52 | 20 | | 48 | 46 | 44 | | c | | | ∞ | 6 | 7 | ∞ | | = | | | | ting (mE) | 389049mE
6428476mN | 389051mE
6428484mN | 389053mE
6428440mN | 389053mE
6428491mN | 389056mE
6428499mN | 389058mE
6428506mN | 389077mE
6428518mN | 389354mE
6428903mN | 389360mE
6428905mN | 389366mE
6428913mN | 389389mE
6428899mN | 389397mE
6429027mN | 389408mE
6428922mN | 389414mE
6428941mN | 389420mE
6428947mN | 389428mE
6428980mN | 389448mE
6428947mN | | ΙA | rea (ha) | 0.04 | 0 | 90.0 | 0.08 | 0 | 0 | 0 | 90.0 | 0 | 0 | 0.32 | 0.01 | 0.01 | 0.02 | 0.01 | 0 | 0.07 | |----------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | Ħ | Ξ | Ξ | Ξ | Ξ | Ξ | Ξ | = | = | = | = | = | E | E | E | Ξ | = | | | P6_2 | - | — | - | — | - | — | — | _ | _ | _ | - | - | — | — | — | - | - | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 7 | 2 | 7 | 2 | 7 | 7 | 7 | 7 | 7 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 7 | 2 | 7 | 2 | 7 | 2 | 7 | 2 | 2 | 7 | 7 | 7 | 7 | 2 | 7 | 7 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 7 | 7 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ġ | P3_7a | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | | | P3_6
P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | L | ocality | WELLARD | WELLARD | WELLARD | WELLARD | | | | WELLARD | WELLARD | WELLARD | PARMELIA | WELLARD | WELLARD | WELLARD | | | WELLARD | | | Туре | LANE | b | LANE | LANE | | | | SI | TURN | TURN | A | ST | ST | ST | | | ST | | Roa | ad Name | SPINNER | KABER | SPINNER | SPINNER | | | | SILVERSMITH | BRANTWOOD | BRANTWOOD | PARMELIA | SILVERSMITH | SILVERSMITH | SILVERSMITH | | | SILVERSMITH | | Lot | :/ Rd No. | 7 | 4 | 2 | 33 | | | | 33 | 31 | 31 | | 48 | 31 | 20 | | | 35 | | | ting (mE)
hing (mN) | 389449mE
6429042mN | 389459mN
6428940mN | 389475mE
6429065mN | 389503mE
6429086mN | 389512mE
6428902mN | 389512mE
6428902mN | 389526mE
6429383mN | 389529mE
6429405mN | 389536mE
6428885mN | 389536mE
6428885mN | 389537mE
6431008mN | 389543mE
6429106mN | 389556mE
6429450mN | 389556mE
6429111mN | 389567mE
6429463mN | 389581mE
6428854mN | 389588mE
6429363mN | | Aı | rea (ha) | 0.04 | 0 | 0.11 | 0.01 | 0.02 | 0 | 0 | 0.07 | 0.03 | 0.03 | 0.01 | 0.01 | 0.05 | 0 | 0 | 0.04 | 0.02 | |-------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | = | = | Ξ | Ξ | = | Ξ | E | Ξ | E | Ξ | Ξ | Ξ | = | E | 7 | E | Ξ | | | P6_2 | — | - | — | - | — | — | - | — | _ | _ | — | _ | — | — | — | — | — | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 7 | 2 | 2 | 2 | 2 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 7 | 7 | 7 | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 7 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 7 | 7 | 2 | 2 | 2 | 7 | 7 | 7 | 2 | 7 | 2 | 7 | 7 | 2 | 7 | 7 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | .eg | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | L | ocality | WELLARD | WELLARD | WELLARD | WELLARD | WELLARD | | WELLARD | WELLARD | WELLARD | WELLARD | | | Туре | ST | TURN | b | TURN | ST | | b | b | TURN | ST | TURN | Ь | Ь | | Ŋ | ST | D | | Ro | ad Name | SILVERSMITH | BRANTWOOD | COACHMAN | BRANTWOOD | SILVERSMITH | | CROFTER | COACHMAN | BRANTWOOD | SILVERSMITH | BRANTWOOD | CROFTER | COACHMAN | | COACHMAN | SILVERSMITH | CROFTER | | Lot | t/Rd No. | 52 | 33 | m | 43 | 54 | | 6 | 5 | 47 | 99 | 51 | 7 | 7 | | 10 | | 2 | | Eas
Nort | ting (mE)
thing (mN) | 389591mE
6429091mN | 389597mE
6428838mN | 389619mE
6429362mN | 389625mE
6428815mN | 389632mE
6429090mN | 389638mE
6429504mN | 389639mE
6429504mN | 389648mE
6429346mN | 389655mE
6428793mN | 389670mE
6429094mN | 389675mE
6428785mN | 389688mE
6429519mN | 389696mE
6429313mN | 389704mE
6429100mN | 389705mE
6429308mN | 389706mE
6429307mN | 389707mE
6429539mN | | Aı | rea (ha) | 0.09 | 0.01 | 0.02 | 0.11 | 0.01 | 0 | 0 | 90.0 | 0.01 | 0.02 | 0.03 | 0.01 | 0.03 | 0.03 | 0.07 | 0 | 0.01 | |-------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | Ξ | E | E | Ξ | = | Ξ | = | = | = | = | Ξ | = | E | Ξ | Ξ | Ξ | = | | | P6_2 | - | - | - | - | | - | - | _ | _ | - | — | _ | - | - | - | - | ← | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 7 | 2 | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 7 | 2 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 7 | 7 | 7 | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 7 | 7 | 7 | 2 | 2 | 7 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | <u>.e</u> | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | L | ocality | WELLARD | WELLARD | WELLARD | WELLARD | | | WELLARD | WELLARD | WELLARD | WELLARD | WELLARD | | WELLARD | | WELLARD | | WELLARD | | | Туре | ST | IJ | ь | DR | | | GDNS | GDNS | ST | GDNS | MEWS | | GDNS | | GDNS | | ь | | Ro | ad Name | SILVERSMITH | CROFTER | COOPER | BLACKSMITH | | | WHEEL-WRIGHT | WHEEL-WRIGHT | SILVERSMITH | WHEEL-WRIGHT | GROOM | | WHEEL-WRIGHT | | WHEEL-WRIGHT | | COOPER | | Lot | t/ Rd No. | 58 | 8 | 7 | 4 | | | 17 | 2 | 09 | 17 | 7 | | 17 | | 15 | | | | Eas
Nort | ting (mE)
hing (mN) | 389737mE
6429115mN | 389738mE
6429556mN | 389741mE
6429395mN | 389745mE
6429089mN | 389746mE
6429396mN | 389749mE
6429029mN | 389752mE
6428834mN | 389759mE
6429041mN | 389764mE
6429148mN | 389779mE
6428862mN | 389787mE
6429546mN | 389793mE
6428873mN | 389794mE
6428806mN | 389795mE
6428894mN | 389824mE
6428799mN | 389839mE
6429436mN | 389841mE
6429437mN | | ļ | Area (ha) | 0.04 | 0.03 | 0.11 | 0 | 0.5 | 3.53 | 2.98 | 6.27 | 22.08 | 10.35 | 8.04 | 0.51 | 2 | 0 | 1.27 | 0.34 | 0.59 | |-----------|---------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | = | = | = | = | Ξ | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | | | P6_2 | - | - | - | - | 0 | 0 | 0 | — | 0 | 0 | — | — | 0 | 0 | 0 | _ | ~ | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 7 | 2 | 7 | 7 | 7 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 7 | 2 | 2 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | 0 | 0 | - | - | 0 | - | - | 0 | — | - | 0 | 0 | 0 | - | 0 | 0 | 0 | | | P3_9c | 7 | 2 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 7 | 0 | 0 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 7 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | es. | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | - | ~ | - | ~ | ~ | ~ | - | ~ | ~ | ~ | 0 | ~ | 0 | ~ | - | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Locality | WELLARD | WELLARD | HOPEVALLEY | | | NAVAL BASE | HOPEVALLEY | HOPEVALLEY | POSTANS | POSTANS | HOPE VALLEY | HOPE VALLEY | CALISTA | POSTANS | | HOPEVALLEY | | | | Туре | MEWS | Ь | RD | RD | | 8 | 8 | S
S | RD | 8 | RD | RD | RD | RD | RD | RD | | | Ro | oad Name | GROOM | COOPER | ANKETELL | ANKETELL | | COCKBURN | LUSSKY | HOPE VALLEY | ABERCROMBIE | ABERCROMBIE | HOPEVALLEY | HOPE VALLEY | SUMMERTON | ABERCROMBIE | Millar | HOPEVALLEY | | | Lo | ot/Rd No. | 2 | 9 | | | | 66 | 25 | 192 | 121 | 11 | 198 | 198 | 2 | 23 | | 198 | | | Ea
Noi | sting (mE)
rthing (mN) | 389846mE
6429497mN | 389857mE
6429461mN | 389918mE
6435929mN | 389919mE
6435930mN | 391522mE
6435519mN | 385412mE
6438171mN | 386540mE
6438274mN | 386889mE
6437686mN | 386893mE
6434698mN | 386900mE
6433905mN | 387033mE
6437781mN | 387139mE
6437093mN | 387168mE
6431554mN | 387243mE
6434560mN | 387259mE
6427219mN | 387413mE
6437461mN | 387417mE
6436892mN | | A | rea (ha) | 0.75 | 0.49 | 69:0 | 4.45 | 0.56 | 1.23 | 1.24 | 0.03 | 4.97 | 0.28 | 0 | 14.42 | 0.22 | 0 | 0.2 | 0.56 | 0 | |-------------|--------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | | | P6_2 | - | - | - | - | _ | 0 | - | 0 | _ | _ | _ | _ | - | 0 | - | _ | _ | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 2 | 7 | 2 | 7 | 7 | 2 | 7 | 2 | 2 | 2 | 7 | 7 | 7 | 2 | 7 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | <u>.e</u> | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | — | ~ | _ | - | ~ | 0 | - | 0 | — | ~ | ~ | - | ~ | 0 | - | - | - | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | l | .ocality | HOPEVALLEY | HOPEVALLEY | HOPEVALLEY | HOPE VALLEY | | | | | HOPEVALLEY | | | | | | | | | | | Туре | RD | RD | RD | RD | | | | | RD | | | | | | | | | | Ro | ad N ame | HOPE VALLEY | HOPEVALLEY | HOPEVALLEY | HOPEVALLEY | | | | | HOPEVALLEY | | | | | | | | | | Lo | t/ Rd No. | 198 | 198 | 198 | | | | | | | | | | | | | | | | Eas
Nort | iting (mE)
thing (mN) | 387427mE
6437456mN | 387431mE
6436995mN | 387440mE
6437202mN | 387441mE
6436988mN | 387456mE
6437442mN | 387514mE
6429017mN | 387548mE
6437619mN | 387665mE
6429100mN | 387766mE
6436776mN | 387791mE
6438315mN | 387814mE
6438403mN | 387830mE
6437890mN | 387853mE
6438836mN | 387873mE
6429107mN | 387895mE
6438623mN | 387917mE
6438771mN | 387935mE
6438668mN | | Aı | rea (ha) | 0.01 | 0 | 1.33 | 0.18 | 0.14 | 1.8 | 0.5 | 1.4 | 8.24 | 0.2 | 0.59 | 0 | 0.07 | 0.11 | 0.57 | 0.23 | 0.81 | |-------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------|-----------------------|-----------------------| | | Score | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | | | P6_2 | ~ | — | ~ | 0 | — | — | 0 | 0 | — | — | _ | 0 | 0 | 0 | 0 | 0 | - | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 2 | 2 | 2 | 2 | 7 | 7 | 7 | 2 | 7 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 0 | 0 | 0 | 2 | 0 | 0 | 7 | 7 | 0 | 0 | 0 | 2 | 7 | 7 | 7 | 2 | 0 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 2 | 7 | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 7 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | .es | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | - | - | ~ | 0 | ← | ~ | 0 | 0 | ~ | ~ | ~ | 0 | 0 | 0 | 0 | 0 | — | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | L | ocality | | | HOPEVALLEY | | HOPE VALLEY | | LEDA | KWINANA TOWN
CEN-TRE | HOPEVALLEY | HOPEVALLEY | HOPE VALLEY | | | | KWINANA TOWN
CEN-TER | WELLARD | HOPE VALLEY | | | Туре | | | SD
SD | | RD | | IJ | AVE | RD | RD | RD | | | | AVE | RD | RD | | Roa | ad Name | | | ASHLEY | | ASHLEY | | RUNNYMEDE | GILMORE | POSTANS | POSTANS | POSTANS | | | | GILMORE | WELLARD | ASHLEY | | Lot | t/ Rd No. | | | ж | | 17 | | | | | 14 | | | | | | 386 | 27 | | Eas
Nort | ting (mE)
hing (mN) | 387936mE
6438087mN | 387947mE
6438882mN | 387956mE
6438240mN | 387967mE
6429185mN | 387993mE
6438188mN | 388015mE
6437123mN | 388055mE
6429338mN | 388100mE
6430811mN | 388115mE
6436800mN | 388126mE
6438755mN | 388127mE
6437563mN | 388138mE
6430647mN | 388138mE
6430651mN | 388141mE
6430665mN | 388160mE
6430984mN | 388178mE
6430595mN | 388188mE
6438216mN | | A | rea (ha) | 0 | 0.13 | 90.0 | 0.01 | 0.26 | 0.27 | 1.84 | 0.97 | 0.03 | 0.84 | 0.01 | 0.16 | 0.01 | 0.1 | 0.75 | 0 | 2.39 | |-------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | | | P6_2 | ~ | 0 | ~ | 0 | ~ | 0 | 0 | - | 0 | - | _ | 0 | 0 | 0 | ~ | 0 | _ | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 2 | 2 | 2 | 2 | 2 | 7 | 2 | 2 | 2 | 2 | 2 | 7 | 7 | 2 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 0 | 2 | 0 | 7 | 0 | 2 | 7 | 0 | 7 | 0 | 0 | 7 | 7 | 7 | 0 | 7 | 0 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 2 | 2 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | .e | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | - | 0 | - | 0 | ~ | 0 | 0 | — | 0 | - | - | 0 | 0 | 0 | ~ | 0 | - | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| P1_2a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | L | ocality | | WELLARD | | | | WELLARD | WELLARD | | | HOPEVALLEY | HOPE VALLEY | | | | HOPEVALLEY | | HOPE VALLEY | | | Туре | | RD | | | | SO . | PDE | | | SD. | RD | | | | 8 | | RD | | Ro | ad Name | | WELLARD | | | | WELLARD | BRENTFORD | | | SAYER | POSTANS | | | | ASHLEY | | ASHLEY | | Lot | t/ Rd No. | | 386 | | | | 386 | 22 | | | 98 | 31 | | | | 40 | | 54 | | Eas
Nort | ting (mE)
hing (mN) | 388211mE
6438222mN | 388213mE
6430528mN | 388216mE
6438195mN | 388242mE
6430627mN | 388280mE
6438355mN | 388283mE
643039mN | 388283mE
6428744mN | 388288mE
6438320mN | 388292mE
6430291mN | 388308mE
6438793mN | 388308mE
6438795mN | 388345mE
6430960mN | 388352mE
6430959mN | 388364mE
6430585mN | 388373mE
6438036mN | 388383mE
6430572mN | 388425mE
6438197mN | | | Area (ha) | 0.87 | 9.0 | 0 | 2.11 | 0.02 | 4.59 | 0.21 | 0.76 | 0 | 3 | 0.01 | 0.01 | 0.01 | 0.01 | 0 | 0 | 0 | |----------|-----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | | | P6_2 | 0 | - | 0 | - | - | - | 0 | - | - | — | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 7 | 2 | 7 | 2 | 7 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 7 | 7 | 7 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 2 | 0 | 7 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | 2 | 7 | 2 | 2 | 2 | 2 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | — | 0 | - | — | - | 0 | - | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Locality | WELLARD | HOPEVALLEY | | HOPE VALLEY | HOPE VALLEY | POSTANS | | HOPEVALLEY | HOPEVALLEY | HOPEVALLEY | WELLARD | | WELLARD | WELLARD | WELLARD | WELLARD | WELLARD | | | Туре | RD | RD | | RD | RD | 8 | | 8 | 8 | S
S | MEWS | | LANE | LANE | LANE | LANE | LANE | | F | oad Name | WELLARD | SAYER | | ASHLEY | ASHLEY | ANKETELL | | SAYER | SAYER | ANKETELL | CHARVIL | | SONNING | SONNING | SONNING | SONNING | SONNING | | l | ot/ Rd No. | 386 | 29 | | 22 | 65 | | | 63 | 21 | | E | | 10 | ∞ | 9 | 4 | 2 | | E
No | asting (mE)
orthing (mN) | 388428mE
6430554mN | 388487mE
6438419mN | 388501mE
6430283mN | 388531mE
6438293mN | 388535mE
6438308mN | 388547mE
6435436mN | 388561mE
6430499mN | 388572mE
6438430mN | 388573mE
6438455mN | 388606mE
6435633mN | 388614mE
6430086mN | 388617mE
6430102mN | 388620mE
6430117mN | 388622mE
6430129mN | 388625mE
6430141mN | 388628mE
6430153mN | 388633mE
6430167mN | | A | rea (ha) | 0.01 | 1.05 | 0.31 | 0.68 | 0.02 | 3.08 | 7.72 | 3.46 | 1.74 | 2.04 | 0.62 | 1.61 | 0 | 0.01 | 1.16 | 0.01 | 0 | |-----------|--------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | | | P6_2 | 0 | 0 | 0 | 0 | _ | _ | - | 0 | - | - | - | - | _ | — | — | _ | - | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 2 | 2 | 7 | 2 | 2 | 2 | 7 | 2 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | <u>.e</u> | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | _ | — | _ | 0 | ~ | _ | ~ | - | _ | ~ | _ | _ | — | | : | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 0 | 0 | 0 0 | 0 0 | 0 | 0 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | P1_2a | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | L | _ocality | | WELLARD | BERTRAM | | | HOPE VALLEY | POSTANS | | POSTANS | HOPEVALLEY | POSTANS | POSTANS | ORELIA | ORELIA | POSTANS | ORELIA | ORELIA | | | Туре | | CIR | M QM | | | RD | SD
D | dDN | SD
D | 8 | RD | RD | Ы | 占 | S
S | PL | PL | | Ro | ad Name | | LAMBETH | MILLAR | | | ANKETELL | MCLAUGHLAN | RUNNYMEDE | ANKETELL | ANKETELL | MCLAUGHLAN | MCLAUGHLAN | DOWLING | DOWLING | THOMAS | DOWLING | DOWLING | | Lo | t/ Rd No. | | 27 | | | | | 92 | | | | 9 | | 17 | 19 | | 21 | 20 | | | sting (mE)
thing (mN) | 388652mE
6430178mN | 388671mE
6430213mN | 388721mE
6427521mN | 388750mN
6430402mN | 388816mE
6434536mN | 388965mE
6435577mN | 388982mE
6434743mN | 389007mE
6430258mN | 389082mE
6435443mN | 389148mE
6435811mN | 389165mE
6435269mN | 389343mE
6435340mN | 389349mE
6433039mN | 389372mE
6433035mN | 389374mE
6433827mN | 389392mE
6433035mN | 389411mE
6433032mN | | Ar | rea (ha) | 0.01 | 5.86 | 1.25 | 0.01 | 0.03 | 1.09 | 0.03 | 1.66 | 0.02 | 2.76 | 3.6 | 0.54 | 1.43 | 0.02 | 1.47 | 0.01 | 0 | |-------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | | | P6_2 | - | _ | ~ | ~ | - | _ | ~ | — | — | — | ~ | — | _ | - | — | _ | - | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 7 | 7 | 2 | 7 | 2 | 7 | 7 | 7 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | <u>.e</u> | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | _ | _ | - | ~ | ~ | _ | ~ | ~ | - | ~ | ~ | ~ | ~ | ~ | _ | _ | ~ | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | |
P1_2a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | L | ocality | ORELIA | POSTANS | POSTANS | ORELIA | ORELIA | POSTANS | | POSTANS | ORELIA | POSTANS | ORELIA | | POSTANS | | POSTANS | | ORELIA | | | Туре | 占 | S S | SD. | Ы | Ч | RD | | RD | Ч | SO. | W | RD | S
S | | RD | | RD | | Roa | ad Name | DOWLING | MCLAUGHLAN | MCLAUGHLAN | DOWLING | DOWLING | ANKETELL | | MCLAUGHLAN | DOWLING | MCLAUGHLAN | HENNESSY | ANKETELL | ANKETELL | | MCLAUGHLAN | | WIGGINS | | Lot | / Rd No. | 8 | 119 | 119 | 16 | 4 | | | | 12 | | 48 | | 280 | | 119 | | 20 | | Eas
Nort | ting (mE)
hing (mN) | 389430mE
6433023mN | 389433mE
6434453mN | 389443mE
6434965mN | 389449mE
6433014mN | 389467mE
6433002mN | 389475mE
6435402mN | 389481mE
6434656mN | 389493mE
6434698mN | 389513mE
6432987mN | 389523mE
6435087mN | 389543mE
6432713mN | 389571mE
6435510mN | 389587mE
6435451mN | 389621mE
6432967mN | 389639mE
6435192mN | 389645mE
6432975mN | 389664mE
6432950mN | | , | Area (ha) | 2.36 | 1.15 | 0.04 | 3.08 | 90.0 | 5.91 | 23.99 | 0 | 0 | 5.37 | 0 | 0 | 2.33 | 4.27 | 3.05 | 0.03 | - | |----------|---------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | | | P6_2 | - | _ | _ | - | _ | - | - | - | — | — | - | - | — | - | _ | - | - | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 7 | 2 | 2 | 2 | 2 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 7 | 7 | 2 | 7 | 2 | 2 | 7 | 7 | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ē. | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | _ | _ | _ | ~ | — | _ | _ | — | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | m | co | co | c | m | cc | æ | co . | | | P1_2a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | _ | _ | _ | - | _ | _ | - | | | Locality | POSTANS | HOPEVALLEY | | ORELIA | HOPE VALLEY | PARMELIA | PARMELIA | HOPEVALLEY | HOPEVALLEY | | | | | | KWINANA
BEACH | | KWINANA
BEACH | | | Туре | RD | RD | RD | Ы | RD | WAY | AVE | RD | RD | | | | | | RD | | RD | | R | oad Name | MCLAUGHLAN | ANKETELL | ANKETELL | ROACH | ANKETELL | PEDDER | PORTCHESTER | ANKETELL | ANKETELL | | | | | | PORT | | PORT | | L | ot/ Rd No. | 119 | | | 9 | | 6 | | | | | | | | | | | 20 | | Ea
No | sting (mE)
rthing (mN) | 389715mE
6435353mN | 389716mE
6435671mN | 389727mE
6435570mN | 389737mE
6432590mN | 389840mE
6435634mN | 389861mE
6432322mN | 389910mE
6433070mN | 389913mE
6435678mN | 38991mE
6435678mN | 382773mE
6433758mN | 382843mE
6431148mN | 382850mE
6431168mN | 382953mE
6434372mN | 383014mE
6433670mN | 383136mE
6432111mN | 383370mE
6434914mN | 383519mE
6431998mN | | A | rea (ha) | 7.65 | 0.3 | 0.36 | 0.84 | 1.25 | 90.0 | 0.07 | 0.26 | 0.4 | 0.1 | 0.37 | 0.38 | 0.36 | 0.05 | 0.13 | 0.82 | 0.42 | |----------|--------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------| | | Score | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | | | P6_2 | - | — | - | — | - | - | - | - | — | ~ | - | _ | _ | — | _ | — | - | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 7 | 2 | 7 | 2 | 2 | 7 | 2 | 7 | 7 | 2 | 2 | 2 | 7 | 2 | 7 | 2 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | g | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 3 | c | co | m | n | n | m | m | 3 | m | 3 | c | 3 | c | c | 3 | 3 | | | P1_2a | - | ~ | ~ | ~ | ~ | ~ | - | _ | _ | _ | - | ~ | _ | ~ | ~ | - | _ | | l | .ocality | KWINANA
BEACH | KWINANA
BEACH | KWINANA
BEACH | KWINANA
BEACH | KWINANA
BEACH | | KWINANA
BEACH | | Туре | RD | RD | RD | RD | RD | | RD | Ro | ad Name | RISELEY | PORT | PORT | PORT | MASON | | PORT | PORT | PORT | PORT | KWINANA BEACH | PORT | PORT | MASON | PORT | MASON | PORT | | Lo | t/ Rd No. | | 20 | 20 | 20 | | | 20 | 20 | 20 | 20 | | 20 | 20 | 22 | 20 | | 20 | | Eas | sting (mE)
thing (mN) | 384131mE
6435722mN | 384134mE
6432951mN | 384162mE
6432074mN | 384217mE
6431982mN | 384308mE
6434850mN | 384309mE
6436071mN | 384319mE
6432915mN | 384319mE
6432967mN | 384325mE
6432864mN | 384361mE
6432762mN | 384450mE
6431910mN | 384482mE
6433033mN | 384490mE
6432857mN | 384511mE
6433222mN | 384530mE
6432566mN | 384532mE
6434927mN | 384534mE
643300mN | | | Ar | ea (ha) | 0.12 | 0.42 | 0.21 | 0.11 | 0.14 | 0.12 | 0.28 | 2.46 | 0.13 | 0.17 | 0.2 | 96.0 | 0.43 | 0.45 | 0.83 | 0.17 | 0.27 | |---|---------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | | Score | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | | | | P6_2 | - | - | — | — | - | - | — | ~ | ~ | — | - | — | - | - | - | - | — | | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | P5_1b | 7 | 2 | 7 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | P4_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | P3_9c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | P3_9a | 2 | 7 | 2 | 2 | 7 | 7 | 2 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | 2 | 2 | 2 | | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | ria | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | P3_4 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 | 0 0 | | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | P3_3a
P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | P1_2b | ~ | m | m | c | 23 | æ | m | 23 | cc | e | m | æ | 3 | m | c | m | m | | | | –
P1_2a | — | — | — | — | — | - | — | _ | — | — | —
 — | - | — | — | — | — | | | Lo | ocality | KWINANA
BEACH | KWINANA
BEACH | KWINANA
BEACH | WINANA
BEACH | KWINANA
BEACH | WINANA
BEACH | KWINANA
BEACH | WINANA
BEACH | VINANA
BEACH | VINANA
3EACH | VINANA
3EACH | VINANA
3EACH | VINANA | WINANA
BEACH | WINANA
BEACH | | KWINANA
BEACH | | | | | ₹_ | ₹_ | ₹_ | ₹ _ | ₹ _ | ₹ | \$ _ | ₹ _ | ₹ _ | ₹ | ΧH | ₹ <u></u> | ΧH | ₹_ | ₹_ | | ₹ _ | | | | Туре | SD. | 8 | SD
SD | RD S | S | S | 8 | SO . | | RD | | | Roa | d Name | PORT | PORT | PORT | MASON | PORT | MASON | MASON | MASON | PORT | PORT | MASON | MASON | MASON | PORT | PORT | | PATERSON | | | Lot | / Rd No. | 20 | 20 | 20 | 22 | 20 | | 22 | | 20 | 20 | 22 | | | 20 | 20 | | | | N | East
North | ing (mE)
ning (mN) | 384550mE
6432246mN | 384562mE
6432744mN | 384591mE
6432172mN | 384608mE
6433714mN | 384617mE
6432616mN | 384636mE
6433723mN | 384655mE
6433456mN | 384657mE
6434019mN | 384662mE
6433027mN | 384672mE
6433048mN | 384675mE
6433307mN | 384698mE
6434753mN | 384707mE
6433699mN | 384711mE
6432558mN | 384718mE
6432511mN | 384740mE
6434119mN | 384748mE
6432795mN | | H | Area (ha) | 0.55 | 0.15 | 0.01 | 0.01 | 0.01 | 0.5 | 0.27 | 0.22 | 0.23 | 0.34 | 0.19 | 0 | 1.25 | 0.16 | 0.32 | 0 | 0 | |-----------|--------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | | | P6_2 | - | - | — | — | - | — _ | — | ~ | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 7 | 2 | 7 | 7 | 2 | 2 | 7 | 2 | 7 | 7 | 2 | 7 | 7 | 2 | 7 | 7 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | <u>.e</u> | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 3 | cc | c | c | æ | c | m | Ω. | cc | m | 3 | 2 | Ω | 3 | c | 3 | 3 | | | P1_2a | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | Locality | KWINANA
BEACH | | | | | KWINANA
BEACH | | | | | | | KWINANA
BEACH | | | | KWINANA
BEACH | | | Туре | RD | | | | | RD | | | | | | | RD | | | | ST | | Ro | oad Name | DONALDSON | | | | | PATERSON | | | | | | | PATTERSON | | | | RICHARDSON | | Lo | ot/ Rd No. | 6 | | | | | | | | | | | | | | | | 2 | | Ea
Noi | sting (mE)
thing (mN) | 384773mE
6434202mN | 384779mE
6434022mN | 384779mE
6433472mN | 384779mE
6433472mN | 384779mE
6433472mN | 384782mE
6432264mN | 384785mE
6432604mN | 384789mE
6433820mN | 384802mE
6432331mN | 384805mE
6433664mN | 384806mE
6433917mN | 384806mE
6433917mN | 384815mE
6432771mN | 384820mE
6432176mN | 384823mE
6432157mN | 384838mE
6432327mN | 384840mE
6432315mN | | A | rea (ha) | 0.22 | 0 | 0.61 | 4.03 | 0.25 | 0.16 | 0.03 | 0.75 | 90.0 | 0.34 | 0.19 | 0 | 1.23 | 1.73 | 0.27 | 0.17 | 0.17 | |----------|-----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | | | P6_2 | — | _ | — | — | — | — | — | _ | — | — | — | _ | 0 | - | - | — | - | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 2 | 2 | 2 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 7 | 2 | 2 | 2 | 2 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | a | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 3 | 33 | c | m | m | m | m | m | c | m | ~ | n | 0 | 3 | m | 3 | m | | | P1_2a | - | _ | ~ | _ | ~ | ~ | — | _ | - | - | - | - | 0 | - | ~ | ~ | - | | l | .ocality | KWINANA
BEACH | KWINANA
BEACH | | KWINANA
BEACH | | KWINANA
BEACH | KWINANA
BEACH | KWINANA
BEACH | KWINANA
BEACH | KWINANA
BEACH | | KWINANA
BEACH | NAVAL BASE | KWINANA
BEACH | KWINANA
BEACH | KWINANA
BEACH | KWINANA
BEACH | | | Туре | S | ST | | RD | | ST | ST | RD | П | ST | | ST | RD | S
S | 8 | RD | RD | | Ro | ad N ame | THOMAS | RICHARDSON | | MASONA | | RICHARDSON | RICHARDSON | ROCKINGHAM | BURTON | RICHARDSON | | RICHARDSON | COCKBURN | MASON | MASON | MASON | ROCKINGHAM | | Lo | t/ Rd No. | | 2 | | | | 2 | | | 1 | 2 | | 9 | 66 | 51 | 51 | 51 | = | | | sting (mE) | 384846mE
6433820mN | 384851mE
6432128mN | 384861mE
6433867mN | 384878mE
6433180mN | 384882mE
6433935mN | 384890mE
6432128mN | 384929mE
6432126mN | 384933mE
6433205mN | 384941mE
6433919mN | 384979mE
6432141mN | 384982mE
6433866mN | 384994mE
6432148mN | 385010mE
6438122mN | 385055mE
6433428mN | 385076mE
6433379mN | 385171mE
6433441mN | 385242mE
6433387mN | | А | rea (ha) | 1.32 | 1.32 | 0 | 1.8 | 1.16 | 0.98 | 0.4 | 1.06 | 0.5 | 1.63 | 0.01 | 0.01 | 0.97 | 0.63 | 2.6 | 0.32 | 0.58 | |-----------|------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | Score | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | | | P6_2 | — | — | 0 | 0 | 0 | 0 | 0 | 0 | 0 | _ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 7 | 2 | 7 | 2 | 2 | 7 | 7 | 7 | 7 | 2 | 7 | 2 | 2 | 2 | 2 | 2 | 2 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 2 | 7 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | 2 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | <u>.e</u> | P3_7b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | 0 | 0 | - | - | — | — | - | — | - | 0 | ~ | _ | - | — | - | — | — | | | P3_3b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 0 | 0 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P1_2a | _ | _ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ι | .ocality | | | | POSTANS | HOPE VALLEY | POSTANS | HOPEVALLEY | POSTANS | HOPEVALLEY | | | | POSTANS | MEDINA | POSTANS | POSTANS | | | | Туре | | | | RD | RD | RD | RD | RD | RD | | | | 8 | AV | RD | RD | | | Ro | ad Name | | | | ABERCROMBIE | ABERCROMBE | ABERCROMBIE | ABERCROMBE | ABERCROMBIE | ABERCROMBE | | | | MCLAUGHLAN | GILMORE | ABERCROMBIE | MCLAUGHLAN | | | Lo | t/ Rd No. | | | | 53 | | 106 | | 138 | | | | | 45 | 46 | | 45 | | | Eas | iting (mE) | 385700mE
6431950mN | 385700mE
6431950mN | 387255mE
6434271mN | 387281mE
6434340mN | 387456mE
6435926mN | 387482mE
6434842mN | 387488mE
6436106mN | 387491mE
6434974mN | 387494mE
6436166mN | 387806mE
6437916mN | 387982mE
6434031mN | 387982mE
6434031mN | 387982mE
6434031mN | 387983mE
6433331mN | 388036mE
6434526mN | 388188mE
6434269mN | 388292mE
6434587mN | | Ar | ea (ha) | 2.38 | 0.27 | 5.7 | 0.1 | 0.31 | |-------------|------------------------|-----------------------|-----------------------|-----------------------|----------------------|-----------------------| | : | Score | 6 | 6 | 6 | 6 | ∞ | | | P6_2 | 0 | 0 | 0 | 0 | 0 | | | P6_1 | 0 | 0 | 0 | 0 | 0 | | | P5_1b | 7 | 7 | 7 | 7 | 7 | | | P5_1 | 0 | 0 | 0 | 0 | 0 | | | P4_1 | 0 | 0 | 0 | 0 | 0 | | | P3_9c | 0 | 0 | 0 | 0 | 0 | | | P3_9b | 0 | 0 | 0 | 0 | 0 | | | P3_9a | 2 | 7 | 7 | 7 | 7 | | | P3_8 | 0 | 0 | 0 | 0 | 0 | | .e | P3_7b | 0 | 0 | 0 | 0 | 0 | | Criteria | P3_7a | 0 | 0 | 0 | 0 | 0 | | | P3_6 | 0 | 0 | 0 | 0 | 0 | | | P3_5 | 0 | 0 | 0 | 0 | 0 | | | P3_4 | - | - | - | - | 0 | | | P3_3b | 0 | 0 | 0 | 0 | 0 | | | P3_3a | 4 | 4 | 4 | 4 | 4 | | | P_3 | 0 | 0 | 0 | 0 | 0 | | | P1_2d | 0 | 0 | 0 | 0 | 0 | | | P1_2c | 0 | 0 | 0 | 0 | 0 | | | P1_2b | 0 | 0 | 0 | 0 | 0 | | | P1_2a | 0 | 0 | 0 | 0 | 0 | | L | ocality | POSTANS | POSTANS | POSTANS | HOPE VALLEY | KWINANA TOWN | | | Туре | RD | RD | RD | RD | WAY | | Roa | ad Name | MCLAUGHLAN | MCLAUGHLAN | MCLAUGHLAN | ANKETELL | HUTCHINS | | Lot | / Rd No. | 45 | 9 | 45 | | 7 | | Eas
Nort | ting (mE)
hing (mN) | 388294mE
6434245mN | 388331mE
6434979mN | 388781mE
6433865mN | 38872mE
6435940mN | 388415mE
6432193mN | ## **ADMINISTRATION** Cnr Gilmore Ave and Sulphur Rd, Kwinana WA 6167 PO Box 21, Kwinana WA 6966 Telephone 9439 0200 customer@kwinana.wa.gov.au